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Abstract. In tonal languages, tone is of vital importance in differentiat-
ing between lexical words and grammatical forms. Tone recognition can
improve the performance of speech recognition tasks for tonal languages
by re-evaluating word hypotheses using tonal information or by including
prosodic features in the acoustic model used. Little effort has been made
to evaluate the effectiveness of machine learning approaches for tone de-
tection in African low resourced languages. In this paper we propose a
selection of prosodic acoustic features to deal with the linguistic speci-
ficities of the Yemba language (spoken in Cameroon) for tone detection.
The following features, extracted for each frame of a given syllable, are
used: pitch, energy, duration, slope of consecutive F0. Experiments have
been conducted using multi-speaker models trained with Naive Bayes,
LDA, QDA, SVM and decision trees. The decision trees using the cost
complexity pruning method gave the best results: an accuracy of 61.82%
and a F1 measure of 58.90%.
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1 Introduction

Prosodic elements, known as prosodemes, play a crucial role in understanding
the messages conveyed by speakers. These include tone, accent, rhythm, rate
and intonation. In tonal languages, tone is of vital importance in differenti-
ating between lexical words and grammatical forms. For example in Yemba a
tonal language spoken in Cameroon, the word "apa" can mean "taro", "bag"
or "door", depending on the tonal contour used. In tonal languages, from an
orthographic point of view, graphemes called diacritic symbols are defined to
indicate the tones, and form an integral part of the language’s alphabet. Thus,
tone recognition can improve the performance of speech recognition tasks for
tonal languages, either by re-evaluating word hypotheses using tonal informa-
tion from tone detection models, or by directly including prosodic features in the
acoustic model used [6]. Many linguistic papers [7] agree that the fundamental
frequency is the acoustic correlate of tone par excellence, even though other com-
ponents may contribute to it. This has thus led to studies using features derived
from the acoustic parameters of prosody and machine learning models to detect
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tones in Mandarin, Thai and Cantonese languages [6,16,13], based on large cor-
pora of prosodically annotated data. However, although most of the languages
of sub-Saharan Africa are tonal, little effort has been made to evaluate the ef-
fectiveness of these approaches using prosodic features and machine learning on
African languages, and to our knowledge, no study of this type has been carried
out on Cameroonian languages. In this paper, we focus on the Yemba language.
Yemba is a Niger-Congolese language belonging to the Bantu languages and one
of the ten Bamileke languages spoken in Cameroon, specifically in the western
region and more particularly in the Menoua department. Yemba is used in radio
broadcasts on the department’s local channels, as well as in the vast majority of
local economic activities. Although it was spoken by more than 300,000 people
in 1992, making it the country’s third largest native language in terms of native
speakers [10], few digital resources are available for its study. The writing system
used is based on the AGLC (General Alphabet of Cameroonian Languages) [14],
from which special characters representing the three tones of the (low tone, high
tone, medium tone) language are chosen, as shown in the illustration in Table
1. From a phonological point of view, the unit carrying the tone in the Yemba
language is the syllable, and from a graphemic point of view, the tone is marked
on a vowel or a nasal consonant in a syllable [2]. In tonal languages, particu-
larly Yemba, the tones of the syllables preceding and following a syllable have
an influence on the tone of that syllable. This takes the form of assimilation,
tonal propagation and simplification. To detect tones accurately, a robust tone
detection model must be able to distinguish tones in groups of words that differ
orthographically only in the diacritical symbols of the tone. A challenge with
these languages is that most of these words are either bisyllabic or monosyllabic.
For example, the word ’apa’ has two syllables, but the preceding syllable, neces-
sary for the tonal context of the syllable ’a’, is absent. Hence the need to propose
a solution to overcome this challenge. In this paper, we propose to evaluate and
compare the performance of a multi-speaker model trained using generative clas-
sification algorithms (Naive Bayes, LDA, QDA) and discriminative classification
algorithms (SVM and decision trees) on the YembaTone corpus 3 annotated at
the tonal and syllabic level of the Yemba language. We use prosodic acoustic
features from [6], adapting the feature extractor to take into account certain
specificities of the Yemba.

The rest of this paper is organised as follows: Section 2 discusses the related
work of other researchers. In Section 3, we details our methodology. In Section
4 we presente our experiments and the results obtained. Section 5 concludes the
paper.

2 Related work

Prosodemes are realised by involving the intensity, quantity, duration and pitch
of the sound. In [13] Satravaha performs a syllable-segmented classification of
tones in Thai speech (a tonal and monosyllabic language) that incorporates the
effects of tonal coarticulation, accentuation and intonation using a multilayer
3 YembaTone is available here: http://dx.doi.org/10.17632/cx268tmrwn.1

http://dx.doi.org/10.17632/cx268tmrwn.1
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Table 1: Illustration and impact of the 3 tones of the Yemba language on the
second syllable of the apa grapheme sequence. A simple change in the tone of
the second syllable implies a direct change in the word
Word in Yemba Apa Apā Apá
Tone of Each Syl-
lable

low-low low-medium low-high

Word in English The bag The taro The door leaf

perceptron (MLP) with derived prosodic acoustic features as the input vec-
tor. Satravaha showed that they are fairly representative of each of these three
prosodemes on tone in the Thai language. He constructed a corpus from 5 male
and 3 female speakers. The training set consisted of 100 sentences per speaker
comprising 4 monosyllabic words with different stress and tone patterns. The test
set consisted of 115 sentences with the same structure as those in the training
set. Using ANOVA tests, Satravaha showed that duration and normalized energy
are distinctive features between stressed and unstressed syllables and that F0 is
not. Based on the hypothesis that intonation in the Thai language is strongly
characterised by the gradual decay of the F0 contour, he showed, that the mean
F0 in each tone can be used to take into account for the effect of intonation.
Based on the hypothesis that tone is characterised by the F0 contour normalised
at the level of a syllable, Satravaha found that the realisation of a tone at the
level of a syllable can be affected by the realisation of the tone of the following
syllable. Moreover it can also affect the realisation of the tone of the preceding
syllable. From these analyses, a sequence of features derived from the F0 in which
the normalised F0 contour of the current syllable, the previous syllable and the
next syllable to take into account the effects of tonal coarticulation were used in
the training vector. Then the mean normalised F0 of the syllable and its order
number in the syllable to take into account the effect of intonation were added
to this input vector. Finally, the degree of syllable stress, to take into account
the fact that the normalised F0 contour of stressed and unstressed syllables are
different, was added to the input vector, reducing the size of the final vector to
48 . For each speaker, a MLP classifier was trained on each of the 100 training
sentences and tested on the 115 test sentences, obtaining an average accuracy
rate of 91.36% for the 8 speakers. However, the human explicability and inter-
pretability of the model’s decision based on these features poses a challenge,
particularly when artificial values of -1 are used for the preceding and following
syllables at the beginning and end of the sentence.

Another relevant study conducted in [16] adopted, different normalization
schemes on these prosodic features almost similar to the previous study to make
them robust to conditions variations on these features that can be modeled as
an affine function by exploiting the concept of affine invariance [11]. Indeed, as
in [13], Qiao et al emphasise that the realisation of the prosodic model of the
different tones varies significantly according to the utterances produced under
different conditions. This can be influenced by the speaker, the speaker’s gender,
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the speech rate, the speech style, as well as the speaker’s emotion and prosodic
state. Prosodic state is used to characterise the prosodic behaviour of a sylla-
ble and is related to factors such as the variation in intonation caused by the
position of the syllable in the utterance and the coarticulation effect of preced-
ing and following syllables. Qiao et al seek to make the acoustic characteristics
of prosody invariant to changes in conditions, which can be modelled by affine
transformations. First, they proposed a z-score normalisation of the pitch of the
current syllable relative to the syllables in its utterance. Qiao et al showed that
if transformations in pitch range and pitch level along an utterance between
two speakers can be modelled by affine transformations, then any feature func-
tion applied to this normalisation automatically becomes an affine invariant.
For pitch conditions that vary only at the syllable level, such as speaker emotion
and context intonation, they showed that if these changes can be modeled by an
affine transformation, then normalizing the pitch by subtracting the syllable-level
mean and dividing by the utterance-level standard deviation makes the pitch ro-
bust to variations in syllable-level pitch (but not to variations in syllable-level
pitch range) . As far as duration-related features are concerned, they shown that
defining duration-related features as the ratio between adjacent syllables makes
them invariant to transformations of speech rate conditions (sound) which can
be modelled by an affine transformation. Finally, for energy, the logarithmic
difference in energy between adjacent syllables is a feature that is invariant to
change in loudness, which can be modelled as an added bias on the logarithm
of the energy of the syllables in an utterance. This is how they constructed a
vector of 21 of these prosodic features, with which they trained an architecture
using two linear kernel SVMs. The first is trained for a five-class multiclass clas-
sification and provides the a posteriori vector of the syllable, which they call
the posteriogram. The second takes as input the posteriograms of the current,
previous and next syllable, which it concatenates with the 21 initial prosodic
features to be trained to finally predict the tone of the current syllable, allowing
a classification of multi-speaker tones at syllable level in Mandarin. They used
the large COSPRO-01 corpus1 [15] of Mandarin multi-speaker speech, produced
by 38 male and 40 female native speakers, with over 60,000 syllables for training,
as well as COSPRO-02, produced by two male and two female native speakers,
with just over 10,000 syllables. Both corpora were prosodically annotated and
syllable segmented manually, and achieved 68% accuracy on the test dataset.
However, the interpretability and explicability of the model’s decision is also
problematic here, as the authors replace the posteriogram of the preceding and
following syllables of the beginning and ending syllables with an a posteriori
vector uniformly sampled from a uniformly distributed distribution over the five
classes.

A previous study in [6] considerably extends the prosodic feature vector of
the previous study, while retaining a large part of the previous vector. Thus, the
vector increases from a size of 21 to a size of 52. This extension enables them to
compare the performance of a maxout neural network and an SVM for recognis-
ing tones in continuous Mandarin speech, using the syllable as the unit carrying
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the tone. Indeed, when extracting features, Chen et al start from the observa-
tion of the phonological properties of the Mandarin language, where most words
are monosyllabic or dissyllabic. For each syllable, it is necessary to take into
account the influence of its context. The preceding syllable has more influence
on the tone of a syllable than the following syllable. This is why they choose the
two preceding syllables and the following syllable as the contextual window for
a given syllable. For each syllable, they extract 16 pitch-related features. Chen
et al begin by dividing the logarithm of the syllable pitch into three segments of
equal length, and then extract the mean and slope of the linear approximation of
the pitch contour of these three segments. To take context into account, they also
extract the mean and slope of the linear approximation of the last segment of
the previous syllable and the first segment of the next syllable. They also include
the pitch value of the first and last frames, the minimum and maximum values,
and the value of the first and last frames adjacent to the pitch of the current
syllable. For the four duration-related features, they extracted the duration of
the current syllable, its normalised duration (z-score), and the two duration ra-
tios with adjacent syllables. For the six energy-related features, they extract the
minimum, mean, maximum, range, standard deviation and root mean square of
the logarithm of the energy for the current syllable. For each of these features,
Chen et al finally construct dynamic features of the pop-up window. In their
experiments, they used the large ASCD corpus, a Mandarin corpus manually la-
belled for the prosody of continuous speech, spoken by five male and five female
speakers. The corpus contains a total of 79,679 syllables, unbalanced across the
five tone classes. For training, validation and testing, they used 50,237, 9,820
and 16,628 syllables respectively, selecting a specific proportion of each speaker.
They then trained multi-speaker tone detection models, achieving an accuracy
of 78.21% with the maxout network and 74.19% with the SVMs. However, it
should be noted that one of the limitations of their work lies in the fact that
the samples of utterances in the training, validation and test datasets are not
mutually exclusive in terms of speakers. This situation could lead to unrealistic
performance estimates for a model that is supposed to adapt to new speakers.

3 Methodology

In this section, we present the different steps for evaluating and comparing the
performance of the combination of prosodic acoustic features from the literature
and classical machine learning classification algorithms, with a view to solving
the task of tone detection in the Yemba language. These steps range from the
acquisition of the dataset to the choice of performance evaluation metrics. Figure
1 shows the general architecture of the system. The figure is described in the
next sections.

3.1 Dataset

We developed a pronunciation dataset of specific isolated words in the Yemba
language. These words were segmented into syllables and prosodically labelled
according to tone, using Praat software [4]. This dataset contains a total of 6754
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Fig. 1: Experiment Setup

pronunciations of syllables. Its particularity lies in the fact that it results from
the pronunciation of 11 native speakers, including 4 men and 7 women, aged
between 13 and 50. Most of them are masters-level or higher language students,
which means they have mastered the sounds in a dictionary of isolated words
that we have compiled in collaboration with linguists. This dictionary contains
groups of words whose only difference is the diacritical symbol for tone. This
differentiation was designed to create sufficiently discriminative tone detection
models. An in-depth descriptive analysis of the dataset is presented in Figure 2a
and Figure 2b. For more details on the data collection protocol, please consult
the online repository. It should be noted that the sampling frequency used was
44.1 kHz, with a resolution of 16 bits.

3.2 Feature extraction

Our prosodic acoustic feature extraction module is inspired, as mentioned earlier,
by the work of [6]. In this section, we present these features and the choices that
have been made to adapt their approach to our own data.

Syllabic context adaptation In this paper, we are working with a corpus
of isolated words, so there is no information about their natural context. To
fix the issue of missing context for syllables at the beginning and the end of
utterance, we have borrowed the schwa syllable from English. Ended the neutral
syllable has not been identified in the Yemba language. English is characterised
by its tonic accent, where certain syllables within words are pronounced with
more stress than others. In English, syllables within words can be classified into
three levels of stress: stressed, secondarily stressed or unstressed. The syllable
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(a) (b)

Fig. 2: On the left, the distribution of syllables according to gender, and on the
right, according to tone. Given the limited size of the data and the imbalances,
we have made some crucial choices, including the cross-validation strategy and
the evaluation metrics, to ensure both a reliable assessment of performance and
the robustness of the model.

schwa, predominant in the English language, is often considered to be neutral
or weak in stress and tone. It has no tone of its own and exerts no tonal effect
on surrounding syllables. This makes it a suitable option for use as a substitute
in the missing context of certain syllables in Yemba, as it is unlikely to influence
the tone of these syllables. This is why each speaker has articulated the syllable
schwa, and we use its enunciation as padding at the beginning and end of words.

Acoustic characteristics related to pitch. For each syllable, we obtain a
sequence of fundamental frequencies by analysing overlapping frames. The al-
gorithm used to estimate the fundamental frequency in a frame is based on the
method proposed by [3] and is implemented in the Praat software. The main idea
behind this approach is to choose the candidate for the fundamental frequency
from the local maxima of the frame autocorrelation estimate.

As proposed in [6], pitch-related features are extracted as follows: for each
syllable, 16 features are extracted. First, the log-F0 sequence of the current
syllable is segmented into three segments. The slopes of the linear approximation
of the 3 segments of the current syllable are extracted. In addition, the slope of
the linear approximation of the last segment of the previous syllable and that
of the first segment of the next syllable are extracted. The average of the linear
approximation of the 3 segments of the current syllable is also extracted, as
is the average of the linear approximation of the last segment of the previous
syllable and the first segment of the next syllable. The maximum and minimum
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pitch values of the current syllable are extracted, as are the pitch values of the
last voiced frame of the current syllable and the first voiced frame of the current
syllable. In addition, the pitch values of the last voiced frame of the previous
syllable and the first voiced frame of the next syllable are also extracted.

Here, the Mean of an affine function f on an interval [a, b] is calculated as
follows:

µ[a,b](f) =

∫ b

a

f(x)dx =
f(a) + f(b)

2
(1)

Acoustic characteristics linked to energy. Similar to the pitch characteris-
tics, the energy is also extracted for each frame of a given syllable. In the context
of a signal x in a frame running from time sample t1 to sample t2, the energy is
defined as follows:

Energy =

t2∑
t=t1

x2[t] (2)

As proposed in [6], energy-related features are extracted as follows: for each
syllable, 6 features are extracted. The maximum value, minimum value, range,
mean, root mean square and standard deviation of the energy of the current
syllable are extracted, all with the energy scaled logarithmically.

Characteristics relating to duration. As proposed in [6], duration-related
features are extracted as follows: 4 duration-related features are extracted. The
duration of the current syllable (in seconds), the normalised duration of the
current syllable and the duration ratio with respect to the following and current
syllables are extracted.

Calculation of dynamic characteristics As proposed in [6], they are normal-
isations of the 26 individual characteristics of the current syllable with respect
to the equivalent statistics in the wider context. In our implementations, we
choose the utterance, more precisely the pronunciation of the isolated word, as
the contextual window.

3.3 Classification algorithms

In the following section, we will briefly present three generative classification
algorithms and two classical discriminative methods. These approaches are fre-
quently used to solve classification problems and will be discussed in terms of
their relevance and effectiveness.

Generative Classification algorithms: Naïve Bayes, Linear Discriminant Anal-
ysis (LDA) and Quadratic Discriminant Analysis (QDA) are algorithms that
assume that class likelihoods follow a multivariate Gaussian distribution, while
priors follow a multinomial distribution. These methods often prove to be a wise
choice for initiating a classification task, thanks to their rapid execution and
relative simplicity. QDA, for example, assumes that class likelihood densities are
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characterised by individual covariance matrices, leading to quadratic decision
functions. The LDA approach, on the other hand, is based on the assumption
of a common covariance matrix for the likelihood distributions of all the classes,
leading to linear decision functions. In contrast, Naïve Bayes follows a similar
logic to QDA, but makes the assumption that features are independent, leading
to diagonal covariance matrices. In practice, it should be noted that QDA can
have limitations when the dimensionality of the examples is high and the num-
ber of samples per class is small. To obtain robust estimates with small sample
sizes, one solution may involve aggregating the data and estimating a common
covariance matrix, an approach adopted by LDA. Another strategy is to make
specific assumptions about the features, as is the case with Naïve Bayes.

Discriminative Classification Algorithm: Support Vector Machines (SVM) is a
machine learning algorithm that aims to find the best hyperplane that maximises
the margin between two classes in the input space. The optimisation problem to
be solved is :

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi

sc y(i)(w
T .xi + b ≥ 1− ξi), i = 1, · · · , N

ξi ≥ 0

(3)

The parameters w and b represent the separation hyperplane. The soft variables
ξi are used to quantify how the noise in the training data is taken into account,
in order to prevent the margin from over-adapting to disturbances in the train-
ing data. This over-adaptation could lead to over-fitting. C is the regularisation
parameter. It defines the compromise between maximising the margin and min-
imising the classification error. For a large value of C, the algorithm strives to
reduce the error in the learning phase. For a small value of C, the model pe-
nalises the theta parameters, which may lead to a very simple model that may
not be suitable. Kernel functions are one of the major tricks of the SVM trade.
Proposed by Vapnik, these functions are used when the data cannot be sepa-
rated linearly. They are generally interpreted as measures of similarity between
samples from the point of view of the application.

A decision trees is a non-parametric supervised learning algorithm. It has a
hierarchical tree structure, consisting of a root node, branches, internal decision
nodes and terminal leaves. The growth process of a decision tree can be expressed
as a recursive algorithm with following steps: Choose the feature so that when
the parent node is split, the result is greater information; Stop if the child nodes
are pure or if it is no longer possible to improve the purity of the class; Return
to the first for each of the two child nodes. Information gain is the objective
function to be maximised at each division and is defined as follows:

IG(Dp, f) = I(Dp, f)−
p∑

j=1

Nj

Np
I(Dj) (4)
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f is the feature on which the division is performed, Dj the child nodes, Dp the
parent node. I is the impurity measure. Np is the number of training examples in
the parent node, Nj the number of examples in the jth child node. The literature
distinguishes three measures of impurity: entropy, Gini index and classification
error. However, in the presence of noise in the data, by letting the tree grow
until it is at its purest, we can obtain very large trees that overfit the training
data. To avoid this, we can use pruning methods. On the one hand, pre-pruning:
maximum depth, minimum number of samples per node and minimum split im-
provement. Secondly, post-pruning: cost complexity pruning more details about
these pruning can be found in [5].

3.4 Performance evaluation metrics

The dataset shows a significant imbalance, with the "low tone" class largely
predominating. Consequently, our evaluation metric when selecting the model
must take account of this asymmetry. The model must be able to detect all the
correct samples in a given class (recall), while classifying only the correct sam-
ples in that class (precision). This is why we opted for the F1 measure, which is
recommended for balancing the trade-offs between optimising precision and re-
call. More specifically, given that we are working with a multi-class classification
model, we will adopt the weighted macro-mean method for aggregation. This
method takes into account class imbalance, unlike other aggregation approaches
in the context of multiclass classification.

F1macro =

∑C
i=1 wi · F1i∑C

i=1 wi

(5)

C represents the number of classes, wi is the weight associated with class i and
F1i is the F1 measure for class i.

4 Experiments

4.1 Experimental protocol

In our experiments, the YembaTones audio files were divided into two separate
sets: a training set (including 8 speakers) and a validation set, and a test set
(involving 3 speakers). These sets were distributed according to the configuration
shown in the table 2.

To estimate the acoustic properties within a frame, we apply the Hamming
window with a duration of 25 ms and an overlap of 20 ms between successive
frames. In addition, in order to access the annotation information and to esti-
mate certain acoustic characteristics, in particular the fundamental frequency
F0, which come from Praat, we use the Parselmouth [9] Python library.

For each classifier, we select the best hyperparameters using a factorial de-
sign with scikit-learn’s GridSearch tool. The cross-validation strategy chosen for
model selection is the 5-fold stratified group. We first use a 5-fold division due
to the limited size of our dataset. Second, we apply stratification due to the im-
balance of the samples with respect to the target attribute. Finally, we adopt a
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Table 2: Distribution of the Number of Syllables in the Training and Test Sets.
In our experiments, the training data includes samples from speakers 3, 4, 5, 6,
8, 9, 10,11, while the test set includes samples from speakers 1, 2, and 7.

Training Set Test Set

Tone Low High Medium Low High Medium

Number of Syllables 2760 1380 990 856 458 310

cluster approach to allow our model to demonstrate the best performance while
measuring its resilience to speaker changes. Each group corresponds here to a
speaker.

The first experiments consist of using models assuming a Gaussian distribu-
tion of the data. The controlled factor is the selection, in the grid, of one of the
following algorithms: LDA, QDA or Naïve Bayes.

The second experiments consist of choosing the SVM algorithm as a starting
point, then taking into account its various hyperparameters as controllable fac-
tors: the regularisation parameter C, the kernel and parameters. Following the
recommendations in the literature[16,1,8], the different search grids we used are
detailed in the Table3. For experiments with decision trees, given that the Gini

Table 3: Hyperparameter Search Grids for SVM Experiments

Grid
Search C Range Linear

Kernel
RBF

Kernel
RBF

Gamma

Feature
Normalization

(min-max)
References

1 {10−3, . . . , 103} Yes Yes {10−3, . . . , 103} No [16],[1] for C
2 {2−5, . . . , 215} Yes Yes {2−15, . . . , 23} No [8] for C and γ

3 {2−5, . . . , 215} Yes Yes {2−15, . . . , 23} Yes [8] for C and γ

4 {10−3, . . . , 103} Yes Yes {10−3, . . . , 103} Yes [16],[1] for C

impurity measure and entropy generally produce similar results, and that the
misclassification error does not contribute significantly to tree growth due to its
low sensitivity to variations in probabilities [12], we opt to use Gini impurity
in our experiments. Given that the choice of hyperparameters for pruning with
the other methods is almost intuitive, we only consider post-pruning with the
ccp [5] method, whose optimal subtrees in terms of maintaining the compromise
between minimising classification error and the number of leaves are clearly de-
fined in the literature. Our approach mainly consists in obtaining the effective
values of on the training dataset, and then selecting the parameter as well as
our final model by cross-validation on this list of values. This approach allows
us to strike the right balance between training and model generalization.
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The model learning experiments were carried out using the scikit-learn ma-
chine learning library. In the interests of reproducibility, the random number
generation seed for all the libraries was set at 12321. The experiments were car-
ried out on a Colab server with a 2.2 GHz CPU with 2 cores and 12 GB of RAM.

4.2 Results and discussions

For our various experiments, the performance and parameters of the best mod-
els obtained after cross-validation for each configuration, as described in the
protocol, are shown in the Table 4.

Table 4: Results of different classifiers with their best configurations.
Classifier Type +
Grid

Best Model and Parameters F1 on Test
Set (%)

Accuracy (%)

Generative Classi-
fiers

LDA 50.18 55.42

Naïve Bayes 46.97 54.00
QDA 44.35 53.63

SVM + Grid 1 {’C’: 1.0, ’gamma’: 0.01, ’kernel’:
’rbf’}

54.83 55.60

SVM + Grid 2 {’C’: 2.0, ’gamma’: 0.015625, ’ker-
nel’: ’rbf’}

51.34 55.42

SVM + Grid 3 {’C’: 1.0, ’gamma’: 1.0, ’kernel’:
’rbf’}

53.99 55.48

SVM + Grid 4 {’C’: 1.0, ’gamma’: 1.0, ’kernel’:
’rbf’}

53.99 55.48

Decision Tree + Grid
provided by the effec-
tive α values of CPP

{’ccp_alpha’: 0.0029} 58.87 61.82

The results presented highlight significant distinctions between algorithms
based on Gaussian distribution assumptions for data modelling, namely Naive
Bayes, LDA and QDA. More specifically, the LDA algorithm stands out by dis-
playing superior performance, reflected by an average F1 score of 50.12% and an
accuracy of 55.42%. Further analysis of these results suggests a potential correla-
tion with the limited size of the training dataset. The limited size of our dataset
may have restricted the ability of the algorithms to perform accurate estimates
of individual covariance matrices, particularly in the context of QDA, which re-
quires such class-specific estimates. From this perspective, the QDA algorithm
could have been disadvantaged by a lack of data conducive to the generation
of reliable estimates, which would have potentially impacted its performance.
In contrast, the LDA algorithm capitalises on the use of a shared covariance
matrix, giving it an advantage in terms of covariance estimation, thanks to the
availability of a relatively larger quantity of data. However, our results also raise
the question of the inductive bias introduced by the Gaussian assumption on
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the distribution of the data. This observation is reinforced by the performance
of SVMs, which outperforms that of LDA independently of the search grid.
The optimal SVM model is obtained with C=1, an "rbf" kernel with parameter
gamma = 0.01, and without feature scaling, resulting in an average F1 score
of 54.83% and an accuracy of 55.42%. The SVM results on different grids show
that linear kernels failed to separate the data more effectively using prosodic fea-
tures. Furthermore, the lack of improvement due to scaling suggests that each
prosodic feature variable does not contribute equally to the tone classification
process in the Yemba language. This could indicate that some pitch-related fea-
tures are of greater importance, while others, such as duration and energy, act as
accompanying factors to account for contextual variations, such as the speaker’s
emotional state or speech rate. This hypothesis is further supported by the fact
that the decision tree-based model performs significantly better than the other
algorithms, with an average F1 score of 58.87% and an accuracy of 61.82%. This
finding can be attributed to the fact that decision trees do not assume complex
assumptions and can act as feature selectors, reinforcing the idea that extracted
prosodic features, without complex combinations as in SVM models, offer a bet-
ter ability to discriminate tones. The improved performance of decision trees also
suggests the possibility of exploring experiments with ensemble models with de-
cision trees as the base learner, with the potential aim of further improving tone
detection using prosodic features.

5 Conclusion

In this study, we explored a crucial aspect of speech recognition in tonal lan-
guages, namely the detection of tones, which play a fundamental role in dis-
tinguishing between lexical words and grammatical forms. Previous work on
tonal languages, such as Mandarin or Thai, could not be directly applied to
our study. Our focus was on Yémba, a tonal language spoken in Cameroon. We
developed a comprehensive approach to tone detection in Yemba using various
machine learning algorithms, including Naive Bayes, LDA, QDA, SVM and deci-
sion trees. Faced with the challenges posed by the linguistic properties of Yemba,
we carefully selected prosodic acoustic features such as pitch, energy, duration,
slope and the average of consecutive F0 values. By filling in the left and right
of the utterances with the neutral syllable "schwa" from English, we solved the
problem of missing syllables at the beginning and end of the utterance. These
features were applied to a YembaTone corpus that we specially created and pub-
lished for this study. Our experiments showed that the decision trees, using the
cost-complexity pruning method, gave the most promising results, with an ac-
curacy of 61.82% and an F1 measure of 58.9%. Ultimately, our study highlights
the importance of taking linguistic peculiarities into account when designing and
evaluating machine learning models for tone detection. Moreover, the remark-
able performance of the decision trees suggests that these prosodic features, even
without complex combinations, can be used to distinguish tones in the Yemba
language. This paves the way for future experiments with ensemble models using
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decision trees as a base learners, such as rendom forests, in the hope of improv-
ing performance. Furthermore, it would be judicious to integrate these prosodic
features to improve speech recognition in the Yemba language.
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