
Comparing Transformer-based and gradient
boosted decision tree (GBDT) Models on Tabular

Data: A Rossmann Case Study

Coenraad Middel1,2,3[0000−0002−4109−7457] and
Marelie H. Davel1,2,3[0000−0003−3103−5858]

1 Faculty of Engineering, North-West University, South Africa
2 Centre for Artificial Intelligence Research, South Africa

3 National Institute for Theoretical and Computational Sciences
cwmiddel@gmail.com

Abstract. Heterogeneous tabular data is a common and important data
format. This empirical study investigates how the performance of deep
transformer models compares against benchmark gradient boosting de-
cision tree (GBDT) methods, the more typical modelling approach. All
models are optimised using a Bayesian hyperparameter optimisation pro-
tocol, which provides a stronger comparison than the random grid search
hyperparameter optimisation utilized in earlier work. Since feature skew-
ness is typically handled differently for GBDT and transformer-based
models, we investigate the effect of a pre-processing step that normalises
feature distribution on the model comparison process. Our analysis is
based on the Rossmann Store Sales dataset, a widely recognized bench-
mark for regression tasks.

Keywords: Tabular data · Transformer architectures · Gradient Boost-
ing Decision Trees · Hyperparameter tuning · Rossmann Store Sales

1 Introduction

Almost all industries produce data that is stored in tabular format, with tabular
data in general being the most common type of data structure [7]. Heteroge-
neous tabular data is traditionally modelled with GBDTs or random forests,
with good results [19]. Some modern, novel deep learning models, employing the
popular transformer architecture or attention mechanism, claim matching or su-
perior performance [1,20,17] to the contemporary GBDT models. This remains
a contentious issue with many factors influencing the performance and validity
of comparisons between models.

In a large, recent study by McElfresh et al. [14], it was found that the per-
formance improvements offered by such deep neural networks (DNNs) are negli-
gible, especially when taking into account the considerable effort required when
developing the DNN-based models. However, the hyperparameter (HP) tuning
protocol used to develop models was restrictive (see Section 4.2) raising ques-
tions with respect to the method and results. In this study, we use a well-known



2 C.W. Middel et al.

tabular benchmark and compare four algorithms using a more extensive HP tun-
ing process. We compare two GBDT architectures and two transformer-based
architectures on a regression task. Our goal is not to provide a definitive an-
swer with regard to the comparative performance of these models, but rather to
point out considerations to be taken into account when comparing such model
architectures.

2 Background

There are several techniques for modelling tabular data. We focus on two fam-
ilies of methods: tree-ensemble methods, specifically GBDT models, because of
their proven track record in modelling tabular data [15,8,6], and transformer-
based models because of recent claims with regard to performance and feasibil-
ity [1,17,20].

The GBDT architecture is based on the idea of boosting residuals of weak
learners, usually, decision trees, in an ensemble [10]. These models are popular
solutions as their performance is considered the contemporary benchmark on
heterogeneous tabular data [5,4,15]. The first model of interest, XGBoost is a
highly scalable version of gradient boosting developed by Chen et al. [6], building
on the work of Friedman et al. on gradient boosting [10] more than two decades
ago. This technique is highly scalable as it can be parallelised and distributed
over computers. It is used widely as one of the leading machine learning libraries 4

for regression, classification and other popular tasks. CatBoost is a more recent
contribution to the GBDT model family and was developed by Yandex-based
Dorogush et al. [18] A smart algorithm for built-in categorical feature processing
is introduced, where XGBoost requires pre-processing, such as one-hot encoding,
to deal with features of this nature. CatBoost ranks comparatively high, usually
in the top three, in recent reviews comparing techniques on tabular data that
we are aware of [14,12,5,11].

Transformers are popular for natural language tasks such as translation. The
attention mechanism from Vaswani et al. [21] is versatile and can be used to
augment DNN-based models to be used on tabular data. This is done by parsing
the input variables to an embedding space that can be learned by a form of DNN.
TabNet was developed by Arık et al. [1] and implements an attentive transformer
mechanism in a way likened to that of GBDTs and the efficient way in which they
calculate global feature importance but for instance-wise (or row-wise) feature
selection. This sparse, instance-wise feature selection is learned from the data, to
allow for the highlighting of significant features. It uses an uncommon sparsemax
activation function to pass only certain features sequentially [13]. In contrast,
the self-attention and intersample attention transformer (SAINT) model employs
attention in two distinct ways [20]. The first is similar to that of TabNet, namely
instance-wise attention, although it keeps the more commonly used softmax
activation function for this step, not entirely blocking out features that are not

4 https://xgboost.readthedocs.io/en/stable/index.html

https://xgboost.readthedocs.io/en/stable/index.html


Comparing Models on Tabular Data: Rossmann Case Study 3

deemed important for a given data sample, but highlighting salient features. The
second form is called inter-sample attention and calculates the attention across a
batch of samples after concatenating the embeddings. This enables column-wise
attention. This is used where noisy features are present in a data sample and
can be likened to a regularisation step.

Recent studies [14,12,19,5,11] concerned with deep neural networks and tabu-
lar data, compare them to modern GBDT with varying degrees of success. These
studies agree that traditional GBDT architectures are still the more typically
used method. However, papers proposing novel DNNs-based techniques for mod-
elling tabular data claim architecture described therein is, at least on average,
better than conventional machine learning techniques for tabular data [1,20,17].
On the other hand, McElfresh et al. [14] suggest that the comparison of model
architecture performance is less important than the effort to optimise the HPs.
We review the comparative studies and highlight the inconsistencies in their
conclusions:

– McElfresh et al. is the most recent and largest comparative study, research-
ing 176 datasets. Comparing specifically GBDT models and DNN model
families, they conclude that GBDT is more performant, but by a small mar-
gin, usually not statistically significant [14]. They concluded that most of
the algorithms have statistically similar performance (using p<0.05) with
GBDT models most performant on datasets by less than 0.1%. Taking into
consideration the difference in effort when training the models, the efficacy
of DNNs comes into question.

– Grinsztajn et al. [12] use a repeatable benchmarking method to conclude
that, beyond some specific cases, GBDT-based models tend to be more reli-
able and less computationally expensive. Included in this study are 45 tabular
datasets from various domains with classification and regression tasks, three
GBDT-based models and four DNN-based methods. The datasets are lim-
ited to, at most 50,000 samples with a strict filtering and selection regime.
For HP optimisation, random grid search is preferred, although a section is
dedicated to comparing it to the Bayesian optimisation implementation of
Weights and Biases [3]. It is concluded that the optimisation does not seem
to make a difference in the results, although the experiment is limited to only
200 random search iterations and reaches higher normalised test accuracy
scores for all four models tested when using the Bayesian method.

– Borisov et al. [5] conclude that SAINT consistently outperforms classical
GBDT-based models for very large datasets with more than approximately
1 million data points.

– While confirming that there is no obviously superior method even when
compared to GBDT-based methods, Gorishniy et al. [11] identify a lack
of effective baselines and research protocol as some of the main reasons
why comparisons are inconclusive. The researchers compare an multilayer
perceptron (MLP), ResNet-like model and a newly proposed transformer-
based model with more classical approaches.



4 C.W. Middel et al.

– Shwartz-Ziv et al. [19] conclude that XGBoost is superior to DNN-based ar-
chitectures (neural oblivious decision ensemble (NODE) and TabNet, specif-
ically) recreating comparisons from where these DNN-based models are first
proposed. They also find that when the DNN-based models are used in con-
junction with XGBoost as an ensemble the performance increases.

While the majority of research seems to indicate that GBDTs will outperform
DNNs when considering the effort and computational expense for performance,
McElfresh et al. [14] note that almost every algorithm they test is considered
the best on some dataset while being the worst on another, as aligned with the
‘no free lunch’ theorem [22].

3 Experimental Setup

Comparing different architectures is challenging in that different HPs are appli-
cable. In order to compare different architecture types fairly, the optimisation
process should attempt to find the best combination of model, HPs, and dataset.
This process can also be influenced by the stochasticity in the data splits during
training and validation.

In our approach, we select a well-known benchmark dataset for regression,
as described in Section 3.1. We split the dataset into a training set, a validation
set that is used during the HP optimisation process and an unseen test set for
measuring performance. While some surveys [19,18] only keep the training and
test sets constant, we keep all three dataset splits constant throughout the model
development process.

We define a protocol that aims to find a strong set of HPs for each model.
The protocol itself is described in Section 3.2 and how it is applied for model
development is described in Section 3.3. We compare the performance of the
models using the root mean squared error (RMSE) evaluation metric.

3.1 Data

Rationale The Rossmann store sales dataset is hosted on Kaggle for a 2015
competition5. It is used regularly by the machine learning community to bench-
mark new architectures for regression modelling [9]. Our research is interested
in answering questions regarding transformer-based models with a regression
use case in mind. The original proposal paper for TabNet [1] and its results on
this benchmark were considered, noting the comparative studies done to demon-
strate its performance. RMSE is used as the main metric because it is directly
comparable to that of the original TabNet proposal paper [1].

5 https://www.kaggle.com/competitions/rossmann-store-sales

https://www.kaggle.com/competitions/rossmann-store-sales


Comparing Models on Tabular Data: Rossmann Case Study 5

Description The dataset contains varying features, static categorical features
mixed with time series sales data [1]. It consists of data for 1115 stores based
in Germany across a six-week timeframe. The goal is to predict the sales of
Rossmann stores from these variables. Three Rossmann benchmark datasets are
obtained from Kaggle. These consist of a training dataset with time series data,
a dataset with store information and a test dataset with no target column for
submission to the Kaggle competition. The training dataset consists of 804,056
samples, each representing data at the granularity of an individual store on a
specific day. The store data set includes metadata on the stores such as promo-

Fig. 1. Sales of the top ten stories across the six-week period provided, as they are
found in the training dataset. This shows variations in sales because of seasonality
and promotional intervals, among others: patterns that the algorithms can potentially
learn.

tional intervals, distance from competition, the assortment of store content and
store types. The features of the dataset is described in Table 1.

Other results There is little information available on the test set used in the
TabNet paper. Because Kaggle does not share their test set results, we have
to conclude that Arık et al. defined their own process and used it to define
a test set. Their results are shown in Table 2 We used the values here as a
reference and benchmark for our case study. It is assumed that the mean squared
error (MSE) referred to here in the TabNet paper is the RMSE as with the code
implementation of the Shwartz-Ziv et al. [19] study, because of the size ranges of
the values. Also, if they are assumed to be MSE the results from the Shwartz-Ziv
et al. [19] study would not corroborate the findings of Arik et al. [1].

No code or methodology is provided by Arık et al. [1] to replicate their re-
sults. This is also listed as an issue on the implementation’s GitHub repository 6.
Because TabNet is such a landmark study, the first of the major tabular trans-
former models, we first recreate their results.

6 https://github.com/dreamquark-ai/tabnet/issues/268

https://github.com/dreamquark-ai/tabnet/issues/268


6 C.W. Middel et al.

Table 1. Rossmann dataset features and data types showing both static and time-
varying features.

Feature Data type
Store Integers
DayOfWeek Integers
Date Date
Sales Integers
Customers Integers
Open Integers
Promo Integers
StateHoliday Categorical
SchoolHoliday Integers
StoreType Categorical
Assortment Categorical
CompetitionDistance Real Numbers
CompetitionOpenSinceMonth Real Numbers
CompetitionOpenSinceYear Real Numbers
Promo2 Integers
Promo2SinceWeek Real Numbers
Promo2SinceYear Real Numbers
PromoInterval Categorical

Pre-processing The target variable, Sales (per day), is log-transformed in
order to lower the skewness. This is done using the function.

f(x) = log(1 + x)

The effect is captured in Figure 2: The sales target variable has to be transformed
back to the original domain for calculation of the RMSE. Other steps that are
important include label encoding of categorical variables using skcikit-learn’s [16]
default process and building an ‘IsPromoMonth’ binary feature that indicates
months that are in a promotional interval.

Table 2. Rossmann store sales results from the Arik et al. study in which TabNet was
proposed [1].

Model Test MSE
MLP 512.62
XGBoost 490.83
LightGBM 504.76
CatBoost 489.75
TabNet 485.12



Comparing Models on Tabular Data: Rossmann Case Study 7

Fig. 2. Target variable distribution before log transformation (left) and after log trans-
formation (right). Targets were log transformed to address target distribution skewness.

3.2 Protocol

HP optimisation is performed using Bayesian optimisation, specifically the al-
gorithm as implemented by Weights and Biases 7. For the initial run with each
of the model architectures, we use the default HPs for that architecture. (These
can be found in the appendix.) After the first run, Bayesian optimisation is
used to suggest HP ranges for the next sweep. Where a model fails to find a
minimum in the loss landscape during the default run, we adjust the HPs by
increasing or decreasing the learning rate until a model is found that converges.
The configuration from Weights and Biases for each of the models is then used
to run a HP sweep for each model, updating the model HPs after each model
convergence. This process is repeated until the validation score converges using
different combinations of HPs. For GBDT architectures around 20 hours of com-
pute time seem satisfactory. For transformer-based architectures, this minimum
is significantly higher at around 100 to 120 hours.

Three separate sweeps are performed changing only the initialisation random
seed between them, in order to test the architecture’s sensitivity to random
seeds [2]. For each sweep, the objective is set to minimize the validation score.
The model with the best validation score is then found for each architecture
type. The HP spaces suggested, and consequently investigated for the model are
kept constant for three arbitrary random seeds, repeating the process described.
Seeds are not changed during HP sweeps, in order to maintain the integrity of
the Bayesian optimisation process.

For the different architectures, the code base associated with the paper in
which the architecture was proposed, is used for the implementation. A layer
of abstraction is added for use with the Weights and Biases application Pro-
gramming Interface (API) to implement the HP sweeps. Logging and graphing
of results is also done through this API.

7 https://wandb.ai/site/articles/bayesian-hyperparameter-optimisation-a-primer



8 C.W. Middel et al.

3.3 Model Development

In this section, we describe each model’s default parameters, HP sweep ranges
and parallel coordinate plots. The loss function is set to RMSE for all runs of
the different models. We describe one optimisation (CatBoost) in detail. For the
rest of the models, the HP defaults and ranges can be found in the appendix.

Table 3. CatBoost - Default HP values and HP search space during Bayesian optimi-
sation.

Parameter Name Default Values Range Distribution
Epochs 1,000 50 - 20,000 Uniform (integers)
Depth 6 3 - 12 Uniform (integers)
Learning Rate 0.01 0.005 - 0.02 Univorm (float)
L2 Leaf Reg 12 1 - 30 Uniform (integers)
Border Count 128 32 - 255 Uniform (integers)
Min Data in Leaf 3 1 - 20 Uniform (integers)
One Hot Max Size 2 2 - 255 Uniform (integers)
CTR Complexity 1 1 - 10 Uniform (integers)
Leaf Estimation Iterations 1 1 - 10 Uniform (integers)
Leaf Estimation Method Newton Newton, Gradient Categorical

CatBoost The HP spaces investigated for CatBoost can be found in Table
3. Two graphs are relevant for each HP sweep. The first is a parallel coordi-
nates plot, depicting the combination of HPs with its consequential scores after
training. See Figure 3 for an example of a run for one seed.

Fig. 3. A parallel coordinates plot showing the HPs for the CatBoost HP sweep, along
with the RMSE scores achieved with each combination. When a good combination of
HPs is found, the Bayesian algorithm iteratively optimises the search by updating its
own model linking HPs to performance.



Comparing Models on Tabular Data: Rossmann Case Study 9

Fig. 4. CatBoost - Training and validation scores as process time increases for random
seed 42. It can be seen that the validation scores reach an asymptote.

XGBoost The objective is set to regression with a squared error loss function
(reg:squarederror). The default parameters used for the first run can be found
in Table 7 in the appendix. Early stopping at 30 rounds was implemented for
XGBoost to prevent overfitting. In the second and third random seed sweeps,
the dart booster was removed as it caused overfitting.

TabNet As a sign of the complexity of DNN-based models, both TabNet and
SAINT have more HPs available to tune. The default values for TabNet can be
found in Table 8 in the appendix.

SAINT In our experiments with SAINT, we set the learning rate to 0.00001
as per the default code from the official SAINT repository for the first runs.
However, we observed that the loss did not diminish, suggesting that the learning
rate might not be optimal for the combination of the loss landscape and model
architecture. We updated the learning rate and consequent ranges.

Table 4. Total runtime across all models developed per technique and seed, as well as
average and maximum runtime of a single model training process.

Seed CatBoost XGBoost TabNet SAINT

Runtime Total (Hours)

42 20.89 15.17 157.40 336.84
7 21.00 19.23 40.12 44.98
3 21.91 6.42 48.60 75.43
Total 63.80 40.82 246.12 457.25

Runtime Avg (Hours)

42 0.67 0.12 1.17 7.66
7 0.64 0.16 0.89 2.14
3 0.59 0.06 0.97 3.14
Avg 0.63 0.12 1.07 5.14

Runtime Max (Hours)

42 7.18 0.67 13.01 37.90
7 3.10 1.13 3.83 15.42
3 1.32 1.07 4.14 9.03
Max 7.18 1.13 13.01 37.90

https://github.com/somepago/saint


10 C.W. Middel et al.

Table 5 shows the results for each seed, grouping them by initialisation seeds
first, and then across all seeds.

Table 5. Performance across all models per technique and seed.

Metric Seed CatBoost XGBoost TabNet SAINT

Min of Test Score

42 623.41 636.70 739.98 568.77
7 623.64 657.84 847.52 604.43
3 623.91 653.66 774.09 561.49
Min 623.41 636.70 739.98 561.49

Average of Test Score

42 701.73 805.04 1,246.75 1,281.49
7 745.54 922.44 1,529.19 1,863.28
3 712.68 1,052.53 1,650.34 1,323.00
Avg 720.06 919.88 1,513.19 1,409.57

StdDev of Test Score

42 130.91 455.10 465.46 1,057.73
7 346.04 481.82 365.29 1,152.37
3 320.01 609.34 957.82 1,195.88
Avg 284.01 522.80 760.62 1,126.78

Run Count

42 31 105 135 44
7 33 124 45 21
3 37 122 50 24
Total 101 351 230 89

4 Results

We show results comparing the architectures in terms of the test scores for the
out-of-sample not used in the HP tuning process. We also discuss the implications
of HP-tuning strategies, feature skewness and computational considerations in
our research.

4.1 Performance Comparison

In Table 6 we provide RMSE results for the four models. In each case, we show
the best model (minimum RMSE), average RMSE and the standard deviation
across initialisation seeds. In this study, the best result is achieved by SAINT,
but with a large variability across runs. On average, CatBoost has the lowest
validation scores with the lowest standard deviation.

4.2 Implications of HP Tuning Strategies

In order to determine the importance of the HP tuning protocol used in this
study, we implement the McElfresh et al. HP tuning method [14] for the Ross-
mann store sales. TabZilla 8 is implemented with tenfold cross-fold validation as
8 https://github.com/naszilla/tabzilla

https://github.com/naszilla/tabzilla


Comparing Models on Tabular Data: Rossmann Case Study 11

Table 6. The best model’s performance (RMSE) on the Test set. The average and
standard deviation of the RMSE is calculated for all runs across all random seeds.

Model Minimum Average Std Dev
SAINT 561.49 1,409.57 1,126.78
TabNet 739.98 1,513.19 760.62
CatBoost 623.41 720.06 284.01
XGBoost 636.70 919.88 522.88

is standard practice with datasets obtained from OpenML 9. However, we keep
the train, validation and test sets the same between models but use the rest of
their experimental protocol. In McElfresh et al. researchers keep the learning rate
constant throughout the HP tuning process at 0.00003, at least for the SAINT
model, where we vary this as part of our HP tuning process. It obtains relatively
high importance in our sweeps, ranking fourth. Logging a Tabzilla run with the
XGBoost model after importing the preprocessed Rossmann Store Sales data
to OpenML we obtain the results in Figure 5. These runs were done following
McElfresh et al. and their experimental methodology exacly [14]. In Figure 5,
note that ‘alpha’ is the L1 regularization term, ‘eta’ refers to the learning rate
and ‘lambda’ is the L2 regularisation term on the weights. In our method, more
parameters are swept. See Figure 6 for detail of the HP sweep done using our
method for the same model.

Fig. 5. HPs tested using the process from the proposers of Tabzilla [14]

When compared to the Bayesian optimisation protocol used for our work it
can be seen that a lot less time is spent in HP spaces that are not viable. Com-
paring Figure 5 with Figure 6 it is evident that more time is spent searching for
optimal HPs than eliminating bad combinations of HPs. This effect is aggravated
by the fact that adding an additional parameter expands the HP space.

The best score obtained using the protocol as described in the original Tabzilla
paper is 670,26. This score is on the same size validation sample dataset as our
method, but the split is different because of cross-fold validation being applied.
Our best result with the same model framework is 639,55.
9 https://www.openml.org/

https://www.openml.org/


12 C.W. Middel et al.

Fig. 6. The same task as Figure 5 but using the protocol defined here.

It is clear that in this setup a random grid search does not find as good
a solution as Bayesian optimisation. A lot of precious computational time is
spent on randomly generated HPs that yield poor results. Only 110 of the 329
individual runs, or close to 30% of runs are below 1,000 RMSE. This is in stark
contrast with the Bayesian optimisation runs where 312 of the 351 runs, or 89%
of the individual runs are within this range for the XGBoost architecture (across
all random seeds). Even more notably, more than 50% of the runs are between
600 and 800 RMSE.

Using a Bayesian optimisation method has an advantage compared to the
random grid search used in other comparative studies [14,12], as expected. What
is interesting, is the large effect this could have when comparing models.

4.3 Addressing Skewness

It is observed by a recent study [14] that feature distribution and specifically
the kurtosis negatively affects model performance. Using the same protocol as
defined in Section 3.2, we initiate a HP sweep for two architectures, one from each
model family. However, we do not perform the log transformation of the target
variable, Sales. We compare these results to the log-transformed as obtained in
4. Our results corroborate the findings with both model types performing worse
than when the target variable is transformed. This effect is more pronounced for
the transformer-based model, again affecting the results of comparative studies.

For runs where the log-transform is not applied to the target variable our
limited runs indicate that this affects the GBDT to a lesser degree than the
DNN-based transformer model.

4.4 Computing Considerations

In total more than 1,000 hours worth of HP optimisation and training com-
putational time, distributed between a Nvidia RTX3060 and RTX2080 Super
graphics processing units (GPUs), was utilized for this study. Each of these is
paired with a 12-core/24-thread AMD Ryzen 3900X CPU and 128GB or RAM.



Comparing Models on Tabular Data: Rossmann Case Study 13

5 Conclusion

In this study, we compared two GBDT-based and two transformer-based models
on the Rossmann Stores Sales regression task. Our primary objective was to
determine whether a more rigorous HP optimisation process would influence the
comparative performance of architecturescompared to studies that used a less
optimal methodology. In this analysis, the tuning process had a large effect, with
SAINT resulting in the most performant model on the Rossmann Sales task of
the four architectures tested. XGBoost remains the architecture with the least
variance.

While not specifically investigated in this study, the above could explain why
McElfresh et al. [14] found that the gap between the two families of methods be-
came larger (transformers performed relatively worse) as dataset size increased.
This is unexpected, as transformers are anticipated to be able to handle larger
datasets with comparable ease. However, the effect of a suboptimal tuning pro-
tocol (and premature ending of training runs) is also expected to become more
severe.

In addition, the effect of correcting the skewness of the target variable was
investigated. This is typically done for DNN models but is not necessary for
GBDT models and therefore usually omitted in comparative studies. (Note that
this was only done for the target variable – none of the other features were
transformed, which we leave as future work.)

To conclude: while more constrained evaluations (for example, best evalu-
ation within a certain computational budget) are also valuable, we highlight
the risks of attempting to compare the ‘optimal’ performance of different archi-
tectures without optimising according to the requirements of each architecture.
Here, the HP tuning protocol and feature preprocessing have been shown to
not only have a large effect on individual model performance but also to affect
comparative performance.

References

1. Arik, S.Ö., Pfister, T.: Tabnet: Attentive interpretable tabular learning. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 6679–6687
(2021)

2. Bethard, S.: We need to talk about random seeds. arXiv preprint arXiv:2210.13393
(2022)

3. Biewald, L.: Machine learning experiment tracking. Weights & Biases
https://www. wandb. com (2020)

4. Borisov, V., Broelemann, K., Kasneci, E., Kasneci, G.: Deeptlf: robust deep neural
networks for heterogeneous tabular data. International Journal of Data Science
and Analytics pp. 1–16 (2022)

5. Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., Kasneci, G.: Deep
neural networks and tabular data: A survey. IEEE Transactions on Neural Net-
works and Learning Systems (2022)

6. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., et al.:
Xgboost: extreme gradient boosting. R package version 0.4-2 1(4), 1–4 (2015)



14 C.W. Middel et al.

7. Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., Malhotra, S.:
Notes from the ai frontier: Insights from hundreds of use cases. McKinsey Global
Institute p. 28 (2018)

8. Dorogush, A.V., Ershov, V., Gulin, A.: Catboost: gradient boosting with categor-
ical features support. arXiv preprint arXiv:1810.11363 (2018)

9. FlorianKnauer, W.C.: Rossmann store sales (2015), https://kaggle.com/
competitions/rossmann-store-sales

10. Friedman, J.H.: Stochastic gradient boosting. Computational Statistics Data Anal-
ysis 38, 367–378 (2002)

11. Gorishniy, Y., Rubachev, I., Khrulkov, V., Babenko, A.: Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems 34,
18932–18943 (2021)

12. Grinsztajn, L., Oyallon, E., Varoquaux, G.: Why do tree-based models still out-
perform deep learning on typical tabular data? Advances in Neural Information
Processing Systems 35, 507–520 (2022)

13. Martins, A., Astudillo, R.: From softmax to sparsemax: A sparse model of attention
and multi-label classification. In: International conference on machine learning. pp.
1614–1623. PMLR (2016)

14. McElfresh, D., Khandagale, S., Valverde, J., Ramakrishnan, G., Goldblum, M.,
White, C., et al.: When do neural nets outperform boosted trees on tabular data?
arXiv preprint arXiv:2305.02997 (2023)

15. Nielsen, D.: Tree boosting with xgboost-why does xgboost win" every" machine
learning competition? Master’s thesis, NTNU (2016)

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

17. Popov, S., Morozov, S., Babenko, A.: Neural oblivious decision ensembles for deep
learning on tabular data. arXiv preprint arXiv:1909.06312 (2019)

18. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost:
unbiased boosting with categorical features. Advances in neural information pro-
cessing systems 31 (2018)

19. Shwartz-Ziv, R., Armon, A.: Tabular data: Deep learning is not all you need.
Information Fusion 81, 84–90 (2022)

20. Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss, C.B., Goldstein, T.: Saint:
Improved neural networks for tabular data via row attention and contrastive pre-
training. arXiv preprint arXiv:2106.01342 (2021)

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

22. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (1997). https://doi.org/10.
1109/4235.585893

https://kaggle.com/competitions/rossmann-store-sales
https://kaggle.com/competitions/rossmann-store-sales
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893


Comparing Models on Tabular Data: Rossmann Case Study 15

A HP Defaults and Ranges

A.1 XGBoost

Table 7. Default HP values and HP search space - XGBoost

Parameter Name Default Value Range Distribution
Learning rate 0.3 0.07895 - 0.97295 uniform
Booster gbtree gbtree, gblinear categorical
Number of estimators 200 25 - 976 Uniform (integers)
Max Depth 10 4 - 40 Uniform (integers)
Number of boosting rounds 200 64 - 952 Uniform (integers)

A.2 TabNet

Table 8. Default HP values and HP search space - TabNet

Parameter Name Default Value Range Distribution
Width of decision prediction layer (n_d) 8 32 - 512 Uniform (integers)
Width of attention embedding for each mask (n_a) 8 32 - 512 Uniform (integers)
The number of steps (n_steps) 3 3 - 10 Uniform (integers)
Max epochs 200 1,000 Fixed Value
Learning rate initial 0.1 0.005 - 0.05 uniform
Learning rate scheduler ReduceLROnPlateau - -
Batch size 1,024 128 - 5,048 Uniform (integers)
Virtual batch size 128 64 - 1,024 Uniform (integers)

A.3 SAINT

Table 9. Default HP values and HP search space - SAINT

Parameter Name Default Value Range Distribution
Attention dropout 0.1 0.05 - 0.3 uniform
Attention heads 3 2 - 8 Uniform (integers)
Batch size 256 128 - 512 Uniform (integers)
Embedding size 32 16 - 64 Uniform (integers)
Epochs 100 50 - 200 Uniform (integers)
FF dropout 0.1 0.1 - 0.9 uniform
Learning rate 0.00001 5× 10−5 - 0.001 uniform
Transformer depth 6 3 - 12 Uniform (integers)


	Comparing Transformer-based and GBDT Models on Tabular Data: A Rossmann Case Study

