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Abstract. The escalating threat landscape on South Africa’s critical infrastruc-

ture cyberattacks demands innovative solutions that harness the synergy between 

AI and cybersecurity. This research delves into the intersection of these domains, 

utilising machine learning algorithms to bolster Supervisory Control and Data 

Acquisition (SCADA) networks of such critical infrastructures. These networks, 

pivotal for controlling and monitoring critical infrastructures, collect and process 

sensitive data. The approach melds machine learning's predictive prowess with 

cybersecurity imperatives, resulting in a resilient model capable of preemptively 

identifying and thwarting cyber threats—an aspect often lacking in existing mod-

els. To achieve this, a comprehensive methodology involves the emulation of 

cyberattacks through a Kali Linux machine integrated into a simulated SCADA 

network. Leveraging Wireshark, network traffic is collected for machine learning 

insights. The solution emerges in the form of a dual-tasked ensemble supervised 

machine learning model, combining the power of a Multi-Layer Perceptron 

(MLP) Neural Network and Extreme Gradient Boosting (XGBoost). This syn-

ergy equips the model to decipher subtle patterns and anomalies within network 

traffic. With an average accuracy of 99.60% and a detection rate of 99.48%, the 

model effectively discriminates between normal and suspicious states, while pro-

actively preventing malicious packet infiltration. Through PowerShell, the model 

enforces firewall rules - an embodiment of AI's adaptive governance - endowing 

it with a dual role as both an Intrusion Detection and Prevention Model. Rigorous 

testing on previously unseen data validates the model's performance, boasting 

99.19% accuracy and 98.95% detection rates. Benchmarked against existing 

models, the proposed solution excels in precision, accuracy, and recall/detection 

rates. This cybersecurity model stands as a robust defence for computer-based, 

data-driven networks, underscoring the vital role of machine learning and AI in 

fortifying the security of SCADA networks and critical infrastructure. 
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1 Introduction 

In an era defined by data-driven decision-making, the role of Artificial Intelligence (AI) 

models in fortifying security cannot be overstated. These models possess the excep-

tional ability to analyse extensive datasets, preemptively identifying anomalies and po-

tential threats before they escalate. In this landscape, data-driven AI emerges as the 

linchpin—a formidable ally poised to redefine the security paradigm of Supervisory 

Control and Data Acquisition (SCADA) networks, which are essential for controlling 

and monitoring critical infrastructure by relying on data and information technologies 

(see Fig. 1) [1]. 

 

 

Fig. 1.  SCADA Architecture  

The imperative to safeguard critical infrastructure against relentless cyber threats 

resonates not only in South Africa but also on a global scale, where these threats pose 

significant risks to public health, safety, and economic well-being [2]. Examples of 

such attacks include the Stuxnet virus attack on Iranian nuclear centrifuges [3], cyberat-

tacks on Ukraine's power grid by Russia through SCADA sub-stations [4], SCADA 

attacks on Venezuela power grid causing blackouts [5], at-tacks on power, oil, and gas 

utilities in the United States [6], ransomware attacks on energy companies in Portugal, 

Pakistan, and Italy [7] - [9], and cyberattacks on the Grand Ethiopian Renaissance Dam 

[10]. Johannesburg's City Power in South Africa experienced a ransomware incident, 

which led to disruptions in a significant portion of the utility's applications and net-

works, with the potential to affect around 250,000 customers [11]. 

The central challenge lies in the current limitations of data-driven AI cybersecurity 

models. While these models are proficient in detecting cyber threats within SCADA 

networks, they often fall short in their capacity to proactively prevent these threats. This 

critical gap leaves vital infrastructure vulnerable to potentially devastating attacks. 



The primary objective of this study is to bridge this gap by harnessing the trans-

formative power of data-driven AI models. The aim is to develop an innovative model 

that not only excels in detecting cyber threats within data-driven SCADA networks but 

also possesses the capability to prevent these threats in real-time. This is achieved 

through the seamless integration of the predictive prowess of the Multi-layer Perceptron 

(MLP) with the robustness of eXtreme Gradient Boost (XGBoost), thereby redefining 

the standard of cyber threat defence. 

The paper will explore how data-driven AI models and machine learning techniques 

can be optimally deployed to enhance the security of SCADA networks. 

The rest of the paper unfolds as follows: Section 2 conducts a comprehensive litera-

ture review. Section 3 outlines the research design, data collection, and the proposed 

ensemble algorithm. Section 4 provides findings and the results. Section 5 provides 

analysis and discussion of the results obtained. Section 6 presents concluding observa-

tions, while Section 7 outlines recommendations and avenues for further research. 

2 Literature Review 

This section provides a review of existing literature related to the application of Artifi-

cial Intelligence (AI) and machine learning in enhancing the security of Supervisory 

Control and Data Acquisition (SCADA) networks. SCADA networks are crucial for 

managing critical infrastructure, yet they face complex challenges in distinguishing 

normal traffic from potential cyber threats and identifying specific attack types. 

2.1 AI in SCADA networks security 

Supervisory Control and Data Acquisition (SCADA) networks are indispensable for 

managing critical infrastructure across sectors like power grids and transportation [12]. 

These data-centric networks face a perplexing issue—distinguishing normal traffic 

from suspicious activities is intricate [13]. Additionally, pinpointing specific cyber 

threats like Distributed Denial of Service (DDOS), Denial of Service (DoS), False Data 

Injection Attack (FDIA), and Man-in-the-Middle At-tacks (MitMA) remains elusive 

[14], [15]. 

Debates persist on the efficacy of existing traffic delineation methods. [16] advocate 

for improved detection mechanisms, emphasising the need for precision in anomaly 

detection to strengthen SCADA network security. In contrast, authors such as [17], [18] 

argued that anomaly detection solutions suffice, with a shift toward proactive preven-

tion. This divergence highlights the complexity and demands innovation. 

Data-driven Artificial Intelligence (AI) integration revolutionises SCADA net-work 

security. These AI models excel at real-time analysis, proactively identifying and pre-

venting anomalies within SCADA networks [19]. Their adaptability and learning ca-

pacity make them ideal for safeguarding critical systems [20]. [21] assert their future 

significance, citing superiority in threat detection and mitigation. This shows that data-

driven AI models in SCADA protection revolve around effectiveness and feasibility. 



2.2 Previous Studies 

Authors in [22] proposed the use of Decision Trees (DT) and k-Nearest Neighbour 

(KNN) algorithms, enhanced with ensemble classifiers like AdaBoost, Gradient Boost, 

and XGBoost. Their models achieved outstanding performance metrics of 99% F1-

score, recall, accuracy, and precision after trained and tested using ORNL Electric 

Testbed dataset, outperforming Gaussian Naïve Bayes (GNB) and Random Forest (RF) 

classifiers. This research emphasises the significance of performance-enhancing tech-

niques and the importance of evaluating multiple algorithms for fair comparisons. 

Authors in [23] focused on Intrusion Detection Systems (IDS) for smart grid 

SCADA and IT components. They proposed Long Short-Term Memory (LSTM) and 

Feedforward Neural Network (FNN) algorithms on MODBUS datasets, achieving an 

average accuracy of 99.76%, detection rate of 99.57%, and F1 score of 99.68%. This 

study demonstrated the effectiveness of these algorithms in identifying various network 

intrusion cyberattacks, with FNN-LSTM performing well in both correlated and uncor-

related attacks. 

Authors in [24] proposed Kernel Principal Component Analysis (KPCA) and Sup-

port Vector Data Description (SVDD) as one-class classifiers for intrusion detection in 

smart grid SCADA systems. Their model achieved an accuracy rate of 93.91% and a 

detection rate of 93.6% on KDD Cup 99 dataset. While effective, the study suggested 

further optimisation of free parameters to reduce the computational time. 

Authors in [25] proposed cyberattack detection techniques based on temporal pattern 

recognition using Artificial Neural Networks (ANN) and Hidden Markov Models 

(HMM). They utilised Cyber-Gym dataset and real SCADA system at Ben-Gurion Uni-

versity (BGU) for their experiment. Proposed algorithms achieved high precision, ac-

curacy, F1-score, and recall of 98.1%, 98.9%, 98.2%, and 98.0%. However, the study 

highlighted the need for contextual features related to time of day to further enhance 

the algorithm's performance. 

Authors in [26] applied a hybrid deep learning approach combining Gated Recurrent 

Unit (GRU) and Convolutional Neural Network (CNN) to combat Distributed Denial 

of Service (DDoS) attacks on smart grid SCADA communication infrastructure. They 

used a benchmark cybersecurity dataset from the Canadian Institute of Cybersecurity 

Intrusion Detection System (CICIDSS2017) that closely aligned with real-world sce-

narios. Their models achieved remarkable performance metrics with an accuracy of 

99.7%, precision of 98.1%, recall of 99.9%, and F1-score of 98.9%.  

Existing, and proposed machine learning approaches predominantly emphasise the 

detection and classification of cyberattacks, falling short of providing proactive real-

time defence mechanisms. To bridge the gap, the study presents the development of the 

model using machine learning algorithms that not only identify threats but also function 

as robust firewalls, thwarting suspicious data packets and safeguarding system integ-

rity. 



3 Method 

This section outlines the methodology for developing a data-driven AI model for cy-

bersecurity in SCADA networks using the Python programming language. It covers 

experimental setup, data collection, preprocessing, model development, training, test-

ing, hyperparameter settings, and model evaluation for detection tasks. The section also 

details machine learning insights extraction from network traffic data, crafting of a dy-

namic firewall rule to the model for prevention tasks, and model evaluation for preven-

tion tasks. 

3.1 Research Tools 

To ensure a robust and comprehensive approach, a selection of tools was thoughtfully 

employed in this study. Graphical Network Simulator-3 (GNS3) served as the open-

source platform for emulating the SCADA network. VMWare Workstation Player pro-

vided the essential virtual machine environment, enabling the hosting and operation of 

GNS3 [27]. Kali Linux played a pivotal role in simulating cyberattacks, allowing for 

the assessment of network vulnerabilities and testing resilience [28]. Wireshark, func-

tioning as a network traffic analyser, captured essential network traffic data for subse-

quent analysis and model training and testing [29]. 

The Python programming language, in conjunction with libraries like NumPy, 

SciPy, SciKit-Learn, Pandas, Matplotlib, and Seaborn, formed the backbone of all ma-

chine learning tasks and data visualization [30]. The Subprocess Module executed fire-

wall rules and recorded their outcomes, while Joblib was used for loading and saving 

machine learning models and pre-processing objects, ensuring efficient model manage-

ment. The logging module was systematically deployed to record crucial network 

packet information captured by the machine learning model, and Jupyter Notebook, as 

described in [30], provided an interactive environment for code writing and execution 

in various machine learning tasks and data visualisation. 

3.2 Experiment Setup 

A practical example within a smart grid SCADA configuration was chosen for data 

collection and analysis. While centred on SCADA networks in general, this approach 

harnesses the specific characteristics of the smart grid context to vali-date and showcase 

the AI-driven methodology, ensuring broader applicability to diverse SCADA systems. 

For a comprehensive guide on establishing the smart grid SCADA network topology, 

the work of [31] provides valuable insights. 

The simulated smart grid SCADA network was designed in GNS3 [32]. The net-

work architecture encompassed the control centre, substation, and field area. Devices 

within the control centre, such as Control PCs, SCADA servers, and MTUs, were con-

sistently interacting with PLCs and RTUs in the substation. Sensors in the field area 

were crucial by ever capturing essential grid status data. This data underwent pro-

cessing within the substation before being presented in the control centre for analysis. 



This design underscored SCADA's data-driven essence. Additionally, a network in-

truder, Kali Linux was connected to the network to perform cyberattacks. 

3.3 Data Collection 

The data collection phase involved capturing real-time network packets traffic through 

Wireshark. Captured packet features included IP addresses, MAC addresses, ports, time 

to live, flags, ICMP code, and ICMP type. IP addresses are numerical labels facilitating 

device communication on a network; MAC addresses are unique identifiers at the hard-

ware level for network interfaces; ports are logical endpoints directing network traffic 

to specific applications; Time to Live (TTL) is a value in packet headers determining 

the maximum network hops; flags are conveying control and status information in 

packet headers; ICMP code provides specific network condition details within ICMP 

packets; and ICMP type is a category of the purpose or function of ICMP messages in 

network communication. 

Data was labelled into two classes: "Normal", representing regular network traffic 

behaviour, and "Suspicious", representing network attacks traffic intended to disrupt 

normal operations. The normal network traffic involved routine activities within the 

SCADA network. These activities spanned the data exchange, data presentation, inter-

device communication, network interaction with other smart grid domains and the out-

side world, seamless server access, control, and monitoring. Conversely, the suspicious 

network traffic encompassed a variety of simulated attacks traffic that is meant to dis-

rupt normal network activities, including Denial of Service (DoS) attacks, Distributed 

Denial of Service (DDoS) attacks, Man in the Middle (MitMA), and False Data Injec-

tion Attack (FDIA). DoS and DDoS attacks were targeted to disrupt network traffic on 

SCADA devices in the control centre, substation, and field such as servers, PLC, MTU 

and sensor. MitMA and FDIA were carried to intercept communication network traffic 

between devices in different sections of the SCADA such as MTU in substation and 

sensors in the field.  

The resulting datasets, encompassing training and testing dataset along with un-seen 

data, formed the basis for model development. Training and testing dataset, before split, 

featured 12 input features and a total of 63,845 data points, and previously unseen data 

featured 27 919 data points. These datasets with "Normal" and "Suspi-cious" labels laid 

the groundwork for robust model training and evaluation. (See Fig.2) depicts the snip-

pet of the dataset. 

 

 

 

Fig. 2. Sample dataset - Network traffic 



3.4 Data Preprocessing 

Data preprocessing encompassed the transformation of the real-time network packet 

traffic dataset to make it suitable for machine learning analysis. Guided by AI princi-

ples, this process aimed to address inherent imperfections within raw data, ranging from 

noisy and inconsistent values to the challenge of missing in-formation [33]. The goal 

was to shape the dataset into a format conducive for machine learning algorithms to 

extract insights and identify patterns, forming the basis for strengthening SCADA net-

works. 

 

1. Data Cleaning 

 

A significant observation unveiled missing values, notably in ICMP protocols where 

Source Port and Destination Port fields lay vacant. To safeguard the essence of mean-

ingful instances indispensable for training, a pragmatic approach emerged, to replace 

missing values with zeros. This deliberate choice bolstered the consistency of the da-

taset, casting aside hindrances that might obstruct the algorithm’s understanding. Ac-

knowledging the spectrum of methodologies to tackle missing values, the study opted 

for zero substitution, recognising its aptitude for nurturing our intended outcomes. 

 

2. Data Transformation 

 

i. Encoding Categorical Variables 

 

Categorical variables- the essence of network attributes - demanded numerical transla-

tions. A strategic selection manifested in hash encoding, especially for IP addresses and 

MAC addresses. This technique translated intricate strings into an intelligible numeric 

representation, steering towards elevated model performance and accuracy. Mean-

while, the Protocol column witnessed the magic of one-hot encoding. This generated 

binary components for each protocol, introducing a fresh dimension to algorithm’s per-

ception of categorical richness. 

 

ii. Normalisation of Numerical Features 

 

Variability among numerical features required harmonisation through normalisation. 

This practice brought features to a common scale, circumventing scenarios where any 

single attribute might disproportionately impact model learning. By fostering con-

sistency, normalisation unlocked the model’s capacity to capture patterns from the mul-

tifaceted dataset. 

 

iii.  Taming Class Imbalance 

 

 Class imbalance was an issue on the training set, which means there was a significant 

disparity between the number of instances in the "Normal" (28 911 instances) and "Sus-

picious" (15 780) traffic classes. This disparity could potentially lead to biases in the 



model's performance, as it might be more inclined to classify instances into the majority 

class. To harness the full potential of our model and ensure its effectiveness in detecting 

both "Normal" and "Suspicious" traffic, this conundrum of class imbalance was ad-

dressed.  

To mitigate the class imbalance, various methods were explored, including Random 

Oversampling, Synthetic Minority Over-Sampling Technique (SMOTE), and 

ADASYN (Adaptive Synthetic Sampling). These techniques are designed to balance 

the representation of the minority class (in this case, "Suspicious" traffic) to ensure that 

the model receives sufficient training data for both classes. 

SMOTE emerged as the most effective solution. SMOTE involves generating syn-

thetic instances of the minority class by interpolating between existing instances. This 

method not only balanced the class representation but also enhanced the model's per-

formance in detecting and classifying "Suspicious" traffic instances accurately. By ad-

dressing the class imbalance issue with SMOTE, it ensured that our model could effec-

tively handle the complexity of network traffic patterns and provide robust results. 

3.5 Feature Extraction 

The paper did not implement a separate feature extraction step because the Wireshark 

tool, which we used for capturing network packet data, was already configured to pro-

vide comprehensive and essential features of network packets. These features included 

attributes such as IP addresses, MAC addresses, ports, time to live, flags, ICMP code, 

and ICMP type. The configuration of Wireshark ensured access to the most relevant 

attributes for the analysis without the need for additional feature extraction. This ap-

proach allowed us to work with the raw packet data, which contained the necessary 

information for machine learning tasks. 

3.6 Model Development 

Model Selection 

 

Four distinct models were meticulously chosen to address the task at hand: Random 

Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and an ensemble 

consisting of Multi-Layer Perceptron (MLP) and XGBoost. These selections were 

made based on their aptitude for handling non-linear variables and intricate data. 

XGBoost, as a performance-enhancing algorithm, was selected to create ensemble 

model because it is excellent in handling complex, non-linear data, and its ability to 

generalise well on unseen data. In addition, XGBoost is well known for its regularisa-

tion techniques, and its efficient computation. 

Performance assessment of these models revolved around evaluating their accuracy 

metrics on both the testing data and previously unseen data. While all models demon-

strated commendable performance on the testing data, the ultimate choice was signifi-

cantly influenced by their efficacy in handling unseen data. The ensemble model, a 

fusion of MLP and XGBoost, notably outperformed the others on unseen data, 



solidifying its selection as the preferred model for fortifying SCADA networks against 

cyber threats. 

Hyperparameter Tuning and Model Robustness 

 

In our pursuit of harnessing the full potential of the machine learning algorithms, me-

ticulous hyperparameter tuning was conducted. The hyperparameters of the XGBoost 

and MLP classifiers were optimised to strike a balance between model complexity and 

overfitting while maximising performance. 

For the XGBoost classifier, a comprehensive exploration of key hyperparameters 

was undertaken. The learning rate, a critical factor influencing model convergence, was 

fine-tuned within a range of [0.01, 0.3]. This range was carefully chosen to ensure the 

models explored various step sizes during optimisation. The number of estimators, 

which impacts the tree structure and ensemble size, was optimised over a range of val-

ues from 100 to 1000, with increments of 100. This wider range allowed us to encom-

pass different trade-offs between complexity and model performance, making it more 

adaptable to the nuances of our dataset. 

In the case of MLP, the selection of hidden layer sizes [50, 100, 50] was based on 

the need for flexibility in modelling both simple and complex data relationships, ac-

commodating various network traffic patterns. An iteration limit of 1000 was chosen 

to ensure convergence to an optimal solution, particularly when dealing with complex 

patterns. The choice of the ReLu activation function was made to handle non-linearities 

effectively. A small alpha value of 0.0001 was introduced for regularisation to prevent 

overfitting, and a constant learning rate was used to ensure stable and controlled train-

ing. Using a validation fraction of 0.1 allowed to monitor model performance during 

training. 

The optimisation of these hyperparameters was conducted through an extensive au-

tomatic grid search combined with cross-validation. The grid search involved exploring 

a range of values for each hyperparameter, ensuring that the study considered a wide 

spectrum of configurations. This deliberate approach steered the models away from 

overfitting tendencies and paved the way for capturing intricate patterns in the complex 

network traffic data. 

The specific range or values considered in the grid search were tailored to the char-

acteristics of our dataset and the algorithms used, ensuring that we fine-tuned the mod-

els for optimal performance. The hyperparameter settings are presented in Table 1.  

 

              Table 1. Final hyperparameter setting values for optimal performance.  

 

Parameter Quantity  

N estimators 100 

Learning rate (XGBoost) (XGBoost) 0.1 

Hidden layers 50, 100, 50 



Iteration limit 1000 

Activation function ReLu 

Validation fraction 0.1  

Learning rate (MLP) Constant 

Alpha 0.0001 

 

The Power of Ensemble: Voting Classifier 

 

The culmination of model development materialised in the form of a Voting Classifier. 

The Voting Classifier exploited the individual strengths of each model, combining their 

diverse decision-making strategies to produce a more robust and accurate prediction. 

The fusion of the ensemble model, using soft voting, allowed the model to consider the 

weighted average of predicted probabilities from XGBoost and MLP, mitigating biases 

from either model. While other ensemble techniques such as Bagging and Boosting 

were considered, the Voting Classifier emerged as the ideal choice, underscoring its 

adaptability to the intricacies of network traffic patterns. 

Model Training, Testing and Evaluation for Detection Tasks 

 

The ensemble model (MLP and XGBoost) underwent rigorous training on a training 

set (70%), learning intricate patterns present in SCADA network traffic. This model 

was then tested on a separate testing set (30%) and further tested for its generalisation 

capabilities on unseen data to emulate real-world scenarios. Its performance was eval-

uated using essential metrics including accuracy, F1 score, precision, recall, and F2-

score [34]. In addition, decision boundary was used to provide more insights regarding 

the model decision making. 

 

3.7 Model Firewall rules for Prevention Tasks 

The integration of model’s detection insights with real-time security measures in fire-

wall rules was implemented using Python for model’s prevention tasks. 

 

The following is the overview of how the process was implemented:  

 

1. Load Ensemble Model and Auto Preprocessor: Once the model was trained 

and tested for detection tasks, it was saved and loaded using Joblib library, 

together with its automatic preprocessor.  

 

2. Automatic Preprocessing of Unseen Data: Unlabelled unseen data was loaded 

into the model and preprocessor using the Joblib library. This was representing 

real time incoming traffic.  

 



3. Anomaly Scoring: Anomaly scores quantify packet abnormality, aiding in 

identifying suspicious behaviour. A range of tests were performed, adjusting 

the threshold up and down, and evaluated the model's performance in blocking 

packets. Anomality threshold of 0.5 was set. A threshold of 0.5 performed well 

in identifying potential threats while maintaining an acceptable level of false 

positives.  

 

4. Model Decision: High anomaly scores (above 0.5) signal potential threats.  

 

5. Dynamic Firewall Rules: Used source IP, destination IP, source port, destina-

tion port, ICMP type, and ICMP code as important features. The model trig-

gers real-time firewall rules via PowerShell and Python. Suspicious traffic is 

blocked, tailored to packet attributes. Subprocess module was used to execute 

PowerShell scripts for creating firewall rule.  

 

6. Logging: Logging module was used to log different types of messages during 

packet processing. A log file is created to store the log entries for later review 

and analysis. 

Model Evaluation for Prevention Tasks 

 

To foster evaluation, transparency and provide actionable insights, a created log file 

that captures and documents the firewall's actions, cataloguing both allowed and denied 

packets, was reviewed to see whether the model was able to correctly deny or allow 

packets based on its prediction.  

4 Findings and Results 

4.1 Ensemble Model - MLP and XGBoost 

In the pursuit of fortifying SCADA networks against cyber threats, a comprehensive 

exploration of machine learning algorithms was undertaken to unveil intricate patterns 

and results are displayed in Table 2.  

While DT, RF, and SVM displayed competence in managing non-linear relation-

ships and intricate data, their distinctive characteristics posed limitations in this context. 

DT, proficient in capturing elementary patterns, faltered when confronted with the in-

tricate nuances of network traffic, resulting in comparatively lower performance. De-

spite the ensemble nature of RF, their performance on unseen data was underwhelming. 

DT and RF models suggests that these models were overfitting the training data, there-

fore, manifesting in a significant gap between their testing and unseen data perfor-

mance. The formidable generalisation ability of Support Vector Machines was over-

shadowed by their inability to unveil the concealed subtleties of network traffic. 

In contrast, the proposed ensemble model of Multi-Layer Perceptron (MLP) and 

XGBoost, harnessing MLP's potential to unravel intricate patterns and XGBoost's 



gradient boosting prowess. This amalgamation resulted in a robust performance on test-

ing data and a commendable performance on previously unseen data.  

Table 2. Model selection - performance results 

Model Accuracy on Testing set (%) Accuracy on Unseen 

data (%) 

DT 99.41 37.81 

RF 99.58 38.72 

SVM 97.77 89.67 

MLP and XGBoost 100 99.19 

 

4.2 Model’s Decision Making and Decision Boundary  

Decision boundaries (see Fig.3) provides valuable insights into the behaviour of the 

ensemble model and its ability to distinguish between "Normal" and "Suspi-cious" net-

work traffic instances and provide a deeper understanding of the model's decision-mak-

ing process. 

In the case of the testing set, the observed round-shaped data points represent regions 

where the model can effectively classify instances as "Normal" traffic. The crescent-

shaped red points overlapping the boundary of the blue points indicate instances that 

are more challenging to classify, possibly situated at the inter-face between classes. 

This suggests the model's ability to differentiate subtle patterns in network traffic data, 

but also highlights instances that require more intricate decision-making. 

For unseen data, the persistence of similar behaviour underscores the model's con-

sistent performance in different scenarios. The red points on a different side of the circle 

indicate the model's adaptability to variations in the data distribution while maintaining 

its decision-making prowess. 

 

  

Fig. 3.  Decision boundaries on testing set (left) and unseen data (right) 

 



4.3 Feature Importance and Firewall Rules 

The model's role as an AI-driven firewall is exemplified by its discerning identification 

of important intricate network features, as revealed in the comprehensive log file (see 

Fig.4). By meticulously recording denied and allowed packets, encompassing im-

portant features identified by the model like source and destination IPs, ports, ICMP 

types, and codes, the firewall showcases its aptitude for precise classification. Notably, 

the model excels in distinguishing and blocking packets exhibiting suspicious or mali-

cious behaviours, while seamlessly permit-ting legitimate communication. This perfor-

mance underscores the model's efficacy in fortifying the SCADA network against a 

diverse range of cyber threats. 

 

 

Fig. 4. Log file analysis – Model’s prevention tasks 

4.4 Performance Evaluation 

Table 3 summarises the model’s key performance metrics. Averaging performance 

metrics was a good practice to offer a well-rounded evaluation of a model's perfor-

mance. It provided a more informative and robust assessment of the model's capabili-

ties. 

 

Table 3. Model's performance results 

Metrics (%) Testing set (%) Unseen data (%) Average Score (%) 

Accuracy 100.00 99.19 99.60 

Precision 100.00 99.34 99.67 

Detection/Recall 100.00 98.95 99.48 

F1 Score 100.00 100.00 100.00 

F2 score 100.00 98.69 99.35 



4.5 Comparison against existing ensemble models 

To further evaluate the performance of the proposed ensemble model for SCADA net-

work traffic analysis, results model’s results were compared with those of existing en-

semble models. Table 4 presents a summary of the comparison based on the accuracy 

and detection rates achieved by each model.  

 

Table 4.  Model performance against existing models 

Algorithms Approach Accuracy (%) Detection (%) 

Kernel PCA and SVDD algorithms in [24] 93.9 93.6 

Ensemble LSTM and FNN algorithms in [23]      99.8 99.6 

Combining supervised and unsupervised learning           

Hybrid ANN and HMM in [25]                        98.6 98.0 

Hybrid GRU and CNN algorithm in [26]          99.7 99.9 

Performance-enhanced algorithms in [27] 99.0 99.0 

Proposed Ensemble Model (MLPNN and XGBoost)           99.60      99.48 

   

 

It is evident from the comparison that the proposed ensemble model achieves compet-

itive accuracy and detection rates, outperforming some existing models in both aspects. 

Additionally, the model showcases robustness by achieving high detection rates with-

out relying solely on a high accuracy rate.  

5 Analysis and Discussion  

The ensemble model, which combines the strengths of Multi-Layer Perceptron (MLP) 

and XGBoost, offered an effective solution for dealing with the intricate challenges of 

SCADA network traffic analysis. MLP, with its deep learning capabilities, exceled at 

uncovering intricate patterns within complex network traffic data. Its multiple hidden 

layers and nonlinear activation functions made it adept at capturing both low-level and 

high-level features, enhancing its ability to detect anomalies that may be overlooked by 

other methods. On the other hand, XGBoost, a gradient boosting algorithm, demon-

strated exceptional performance in classification tasks. It iteratively trained a sequence 

of decision trees, each correcting the errors of the previous one, leading to improved 

predictive power. This boosting technique reduced bias and enhanced accuracy. 

The Voting Classifier combined the decision-making strategies of both MLP and 

XGBoost, resulted in a more robust prediction process. This amalgamation mitigated 

biases and enhanced the model's resilience in handling the complexity of network traf-

fic patterns. This is evident as the model achieved 99.19% accuracy on unseen data, 

along with near-perfect precision and F1 scores, and an effective F2 score for anomaly 



detection, demonstrates its capability to identify both malicious and legitimate network 

traffic accurately. 

When integrated as a firewall, the model marks a significant advancement in 

SCADA network security. Its dynamic analysis and packet filtering based on predic-

tions hold immense potential for safeguarding critical infrastructures. The firewall's ac-

curate distinction between normal and anomalous behaviours is particularly advanta-

geous in the intricate landscape of SCADA networks. 

6 Conclusion  

The study demonstrates the effectiveness of data-driven AI in detecting and preventing 

cyberattacks in a SCADA network. The proposed model, combining Multi-layer Per-

ceptron (MLP) and XGBoost, achieved high average accuracy and detection rates of 

99.60% and 99.48% respectively, outperforming individual models. It effectively ad-

dressed the challenge of imbalanced classification through pre-processing and over-

sampling. Ensemble machine learning algorithms mitigated biases and enhanced the 

model's resilience to the complexity of network traffic patterns, and adaptability to var-

iations in the data distribution while maintaining its decision-making prowess. The 

model's integration with data-driven firewall rules showcased its capability to identify 

and block malicious packets, enhancing SCADA network security.  

7 Recommendations and Future work  

In the realm of recommendations and future work, there lies a critical pathway to ele-

vate the prowess of AI in the domain of SCADA networks. Primarily, this journey de-

mands the augmentation of data collection by encompassing pivotal protocols like 

MODBUS and SMTP. An expansive dataset, encompassing an array of features and 

attack scenarios, shall further enhance the model's depth. Beyond the conventional, an 

evolved firewall strategy, transcending the confines of anomaly scores, emerges as a 

strategic imperative. In partnership with industry stakeholders, real-world validation 

stands as a cornerstone, sharpening practicality. This trajectory demands real-time vig-

ilance to proactively detect threats, adaptive learning techniques for ongoing evolution, 

and the unearthing of profound insights through advanced machine learning paradigms 

such as deep learning. Yet, the heart of progress lies in addressing research gaps through 

meticulous scenario simulations and diversified data exploration, culminating in a for-

tified front of AI-driven cybersecurity within SCADA networks. 
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