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Abstract. In the time series forecasting community, many believe that
machine learning methods perform poorly compared to more traditional
statistical techniques. This has been confirmed in the results of the
M4 Competition — an open competition comparing the performance of
new and established univariate forecasting methods. A problem with
these competitions is that the results are aggregated over many datasets
(100,000 in the case of the M4 Competition). This fails to recognise
that each approach may perform the best on some datasets, but very
badly on others. In this paper, two groups of the best-known methods,
one for statistical and the other for machine learning, are compared by
analysing their performance on a set of 300 time series datasets. Re-
sults show that although statistical methods performed the best on 52%
of the time series, machine learning methods achieved lower error rates
on average over all datasets. When zooming into the performance of
methods by frequency of the time series, the machine learning methods
performed better than the statistical methods on yearly and quarterly
time series. The findings show that there are a significant number of time
series datasets where machine learning methods dominate the statistical
methods, and more research is needed to understand the features of time
series datasets that each method is most suited to solving. These find-
ings also show that there is clear performance complementarity between
the different algorithmic approaches, motivating for the future use of
metalearning to implement automated algorithm selection for univariate
time series forecasting.

Keywords: Univariate time series - Forecasting methods - Machine learn-
ing - Statistical methods.

1 Introduction

Time series forecasting, where historical data over time is used to predict future
events, is an important part of business planning processes. Examples of time
series data include demand for a particular product, or the number of passen-
gers passing through an airport — both examples of univariate time series due to
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the data consisting of single observations recorded sequentially over time. With
advances in hardware and software technology, the quantities of time series data
produced have increased significantly. Time series data can occur at different
frequencies, for example, electricity consumption at minute intervals, daily clos-
ing stock prices, monthly hotel occupation totals, quarterly crime figures, and
so on. Regardless of the frequency of the data, the basic principle of time se-
ries forecasting is the same: analysing historical data and building some form of
model to make the required prediction.

Research on time series analysis and forecasting has been an active area for
many decades [7] and continues to attract interest from academics and practi-
tioners from different disciplines. In the early years, simple statistical techniques
dominated the field, but more recently, machine learning algorithms, such as
artificial neural networks, have also found applicability in time series forecast-
ing [22]. This has led to an increase in the number of time series forecasting
methods available to forecasters.

The increased pool of possible forecasting methods to choose from creates a
challenge for forecasters. This is because according to the “no-free-lunch theo-
rem” for supervised learning [26], no single method can perform better than all
the other methods all the time. The implication is that for any given time series
forecasting problem, there are many possible candidate methods to choose from
and it is not clear which method will be the best for the problem upfront. The
problem is compounded when there are a number of different forecasting prob-
lems to solve and each problem could have its own best algorithm. Although
machine learning methods have found applicability in time series forecasting,
their competitiveness against statistical methods is contested [14, 15].

In this paper, we perform an empirical analysis of the performance of five sta-
tistical and five machine learning time series prediction methods on a sample of
300 datasets with three different frequencies. We show that there is performance
complementarity between the methods, meaning that each method outperformed
all other methods on a subset of the datasets. We also show that there are partic-
ular subsets of time series data where machine learning methods perform better
than statistical methods. The main contributions of this study are:

1. We demonstrate the existence of a subset of time series datasets for which
ML methods are superior to the statistical methods and thus,

2. we show that there is performance complementarity between the ML and
statistical methods in univariate time series forecasting.

This paper has four remaining sections. The next section describes the back-
ground of the study and also covers the necessary literature underpinning the
study. In Section 3, the research methods and tools are presented and results are
discussed in Section 4. Lastly, conclusions are discussed in Section 5 including
possible future studies.
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2 Background

Forecasting methods are generally compared using different metrics as explained
by Armstrong [2]. The most common comparison method is based on perfor-
mance against other methods under consideration. There are a number of re-
search studies that compare the performance of different forecasting methods [1,
11,17,25]. These studies compared how well the methods were able to forecast
data either from a specific domain [11,17,21] or for a specific time series [1].

Studies were also conducted to compare a variety of machine learning and
statistical methods [15, 11,24, 19]. These methods were Compared using different
measures of accuracy. In general, machine learning methods were found to be
inferior to their statistical counterparts. In their study, Makridakis [15] used
the 1,045 monthly time series datasets from the M3 Competition to compare
these categories of time series forecasting methods. They recommended that
more research is needed in order to understand and improve the performance of
machine learning methods.

Using the same dataset as in [15], Cerqueira et al. [5] later found that the ma-
chine learning methods performed better than statistical methods when longer
time series with at least 1,000 observations were used. Other studies where ML
methods were found to be superior to statistical methods include [18,27,23,12].

The debate about which category of methods performs better than the other
remains. The proponents of statistical methods argue that machine learning
methods perform poorly compared to statistical methods. They argue that stud-
ies that suggest the superiority of machine learning are biased and designed to
suit them [15]. The other argument is that machine learning methods are rarely
compared with statistical or benchmark methods. This has led to an increase in
methods which are not necessarily suitable for time series forecasting. The re-
sults of the M4 Competition have also stressed the findings made by Makridakis
et al. [15] where the machine learning methods did not perform better than the
statistical methods [14].

On the other hand, studies like Cerqueira et al. [5] that favour machine learn-
ing methods have also pointed out the weaknesses in studies that try to highlight
the lack of accuracy of machine learning methods. In the M4 Competition re-
sults, Makridakis et al. [16] highlighted the quantities of the data as a possible
reason for the poor performance of the machine learning methods. This is due
to these methods requiring more computation power than statistical methods.

What is emerging from the differing views is that ML methods cannot be
ignored when candidates for forecasting a problem are considered. They have
presented themselves as strong contenders for time series prediction applications.
In this paper, we compare the two groups of time series forecasting methods by
comparing stronger ML methods for time series forecasting with the traditional
statistical methods. The stronger ML methods are based on the performance of
10 ML methods in Makridakis et al. [15].
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3 Experimental Methodology

Different time series forecasting methods were selected to represent the two cat-
egories of forecasting methods. The top four ML methods were selected based
on findings by Makridakis et al. [15]. These methods are multi-layer percep-
tron (MLP), support vector regression (SVR), Gaussian processes (GP) and
Bayesian neural network (BNN). In addition, the neural network autoregression
(NNERTAR) method was also included as part of the ML methods. The statisti-
cal methods selected were autoregressive integrated moving averages (ARIMA),
exponential smoothing (ETS), the theta forecasting method (THETAF) [3],
TBATS (T:trigonometric seasonality, B: Box-Cox transformation, A: ARIMA
errors, T: trend, S: seasonal components) [8], and random walk forecasting with
drift (RWF). The statistical methods used were selected based on their popular-
ity and availability in the forecast package in R.

3.1 Data and Sampling

The datasets used for this study come from the Makridakis M4 Competition [16].
The M4 Competition is one of a series of competitions organised since 1982 by
the researcher Spyros Makridakis®. The competitions are intended to gauge the
advances in time series forecasting methods. The M4 Competition contained
100,000 time series datasets from different backgrounds and time horizons; in
particular 48,000 monthly time series datasets, 24,000 quarterly time series
datasets, 23,000 yearly time series datasets, and smaller numbers of weekly,
daily and hourly datasets [16].

For this study, a random sample of 300 time series was selected with 100
series from each of the monthly, quarterly and yearly categories. The time series
in the sample had different numbers of observations; the shortest consisted of
19 data points, the longest had a length of 918 and the average length of all the
time series in the training set was 166. Table 1 shows a summary of the datasets
by the frequency of the time series and highlights the differences between the
time series of the three frequencies. The monthly time series had many more
data points that could be used for training (median of 365) than the quarterly
and yearly time series with medians of 59 and 37, respectively.

Table 1. Summary of the 300 time series datasets used in the study.

Frequency Number of Observations Number of
Minimum|Median|Maximum |Test Observations

Monthly 82 365 918 18

Quarterly 25 59 271 8

Yearly 19 37 84 6

3 https://mofc.unic.ac.cy /history-of-competitions,/
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The M4 Competition dataset was partitioned into a training set and a test set
by the competition organisers. The test set was initially hidden from the public
and became available only after the competition had closed. For the monthly
time series, the next 18 observations following on from the training series were
set aside for testing. The next eight observations of the quarterly series were
kept for testing, while only six were used for testing in the yearly series. For this
study, the training and test sets of the sub-sample of 300 time series datasets
were used exactly as they were used in the competition.

3.2 Software and Tools

This study used the open source software, R for statistical computing [20]. R is
widely used for statistical analysis purposes and includes many useful analysis
extensions shared by users. The R packages that were used to accomplish the
objectives of this research include the forecast package written by Hyndman et
al. [9] that implements different statistical forecasting methods in R.

Table 2 shows a summary of the different methods used in this paper includ-
ing the R packages and functions used to implement the methods.

Table 2. Summary of the five machine learning and five statistical methods used in
this study with the relevant R package and function used for implementation.

Method Method |Description R Package|Function

Category
MLP Multi-layer perceptron neuralnet |neuralnet()

. SVR Support vector regression el071 tune.svm()

Machine .

Learning GP GauSS}an processes kernlab  |gausspr()
BNN Bayesian neural network brnn brnn()
NNETAR|Neural network autoregression forecast  |nnetar()
ARIMA |Autoregressive integrated moving av-|forecast  |auto.arima()

erages

Statistical |ETS Exponential smoothing forecast  |ets()
THETAF |Theta forecasting forecast  |thetaf()
TBATS |Trigonometric, Box-Cox, ARMA,|forecast |tbats()

trend & seasonality
RWF Random walk forecasting with drift |forecast |rwf()

3.3 Data Preprocessing

Preprocessing was done for all the 300 time series datasets based on some of the
main findings and recommendations by Makridakis et al. [15]. The time series
datasets were first transformed using the Box-Cox transformation [4] to remove
non-stationarity in the variance of the series.



6 Riba, E.R. et al.

The monthly and quarterly time series data with seasonality were further
deseasonalised through the application of the STL (seasonal and trend decom-
position using loess) method proposed by Cleveland et al. [6]. All the time series
were further differenced to remove trend components in the series.

Lastly, the observation points y of each time series were normalised using
min-max scaling to prepare them for application in the ML methods, using the

formula:
y/ — y ymzn , (1)
Ymazx — Ymin
where Y,in 18 the minimum and Y4, is the maximum data point in the time
series.

In order to determine the number of input nodes for ML methods, a neural
network autoregression model was fitted to each time series. The method is
implemented in the forecast package in R. The number of input nodes determined
by the autoregression model was then used to create an (n — p) X p matrix of
lagged variables where n is the length of the series and p is the number of input
nodes. These lagged variables were then used as inputs to the ML methods. The
other parameters of the ML methods were left at their default values and allowed
the functions of the different R packages to optimise the parameters. The only
exception was with the support vector regression where the hyperparameter ~
was chosen from a grid of values ranging from 0 to 10 at a rate 0.01. This was
done to reduce the tuning time for the method.

3.4 Data Analysis

The different methods were divided into two groups. The first group represents
the ML methods while the second group is made up of statistical methods as
shown in Table 2. A naive method, random walk with drift (RWF) was also
included in the statistical methods.

All the methods were trained on each time series dataset in the sample using
the predetermined training set from the competition. After training the method
on the n training data points, the test data was then used to calculate the per-
formance of the method. The one-step-ahead forecast f,, 1 for each time series
dataset was obtained using the training set. In order to obtain the multi-step-
ahead forecasts (f,t2,f,13,...), the previous periods’ forecasts were added and
used. Figure 1 demonstrates this process. Since some of the ML methods are
stochastic in nature, multiple forecasts were generated (30 runs) for these meth-
ods and the results averaged to arrive at the performance measure obtained. In
this case, the stochastic ML methods are MLP, GP, BNN and NNETAR.

The performance measures used in this study are the symmetric mean abso-
lute percentage error (sSMAPE) [13] and the mean absolute scaled error (MASE).

Measure sMAPE, was proposed by Makridakis [13] to overcome some of the
drawbacks encountered with mean absolute percentage error (MAPE), such as
the measure not being defined for data points that can take on zero values.
sMAPE is expressed as a percentage and is calculated as:



Title Suppressed Due to Excessive Length 7

Yi:¥2: Y3 ooy Yy b fn+1

v
Yi:Y2: Y3 s Vs fn+1 — fn+2

Yi:¥2: ¥3 oo Yo fn+1! fn+2 — fn+3

¥ -
Yis Y21 Y35 «ovs Y Frats Trszs vony Fig e f

Fig. 1. Multi-step-ahead forecasts generation process for the forecasting methods under
comparison. The first forecast in the test set is based on the data points of the training
set. To predict the next forecast, the first forecast is added to the end of the training
series, and so on.
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where e; is the error at time ¢ (the difference between the actual and predicted
observation), y; is the actual observation, and f; is the forecast at time t.

The other measure used in this study, MASE, was proposed by Hyndman and
Koehler [10] as a scale-independent measure that compares the performance
of a forecasting method with a naive benchmark model by scaling the errors
of the forecasting method using the one-step ahead mean absolute errors of
the benchmark model. In this study, the seasonal naive method was used as a
benchmark. A seasonal naive model simply uses the previous observation from
the corresponding season as the forecast for the current period, that is, f; = y;_s,
where s is the length of the season. This allows the forecaster to determine if
the method is worth pursuing. The errors are first scaled based on the mean
absolute error (MAE) of a naive model for non-seasonal time series as follows
[10]:
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For seasonal time series, the scaled errors are determined by using the following:
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where e, is the error calculated as the difference between the actual and the
forecast value, s is the length of the season and n is the length of the time series.
Then MASE is simply calculated as

MASE = Lf:nl l9:l (5)

For each time series dataset, the methods were ranked according to their
performance. The method with the lowest value is considered the best method
compared to the others. The group that contains the method with the lowest
value for that time series was taken as the recommended group to forecast that
time series.

In comparing the two groups of methods, the following were used:

Values of sSMAPE and MASE were obtained for the individual methods per
time series.

The minimums for each group were taken to represent the performance of
the group for that time series.

An average across all the time series datasets was calculated per group.
Results were then used to compare the performance of the two groups.

4 Results

Based on the 300 time series datasets selected, the ML methods performed bet-
ter than the statistical methods on this sample of time series. The ML group
achieved a combined sMAPE of 6.88%, whereas the statistical methods achieved
a higher sMAPE of 8.21%. The two groups were compared by using the mini-
mum sMAPE for each group of time series. This means for a given time series
dataset, the SMAPE of a group is taken as the minimum sMAPE across the
different members of the group.

To confirm these results, the alternative metric, MASE was also calculated.
Recall that MASE includes a naive method as a benchmark in the measure.
A lower value for MASE is indicative of better performance. Comparing the
average minimum MASE values of each group, ML methods achieved MASE of
1.57, compared to 2.24 for statistical methods.

Figure 2 shows the box plots of the performance of these two groups of
time series forecasting methods based on sMAPE. The chart shows that the
statistical methods have a higher variability than the ML methods. They are
also more skewed to the right as the mean has shifted away from the median.
Box plots for average performance across the group members were also compared
(Average ML and Average_Stats). The variability of the data increases when
using the average across the groups with degrading performance for both groups.
In calculating the average across the methods, the random walk forecasts were
not considered as the method produced poor performance and this could be
observed in Figure 3.

Figure 3 shows the box plot map of the individual methods based on sMAPE.
Notably, the random walk method has performed far worse than any method
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Fig. 2. Boxplots showing the distribution of sSMAPE values of the best performing ML
and statistical method on each dataset. Each red point corresponds to the mean. This
shows that the machine learning algorithms performed slightly better on average and
had slightly lower variance as a group than the statistical approaches.

in the chart. The SVR has a smaller range compared to the other methods,
indicating consistency in performance across the different time series.

Figure 4 shows the sMAPE values of the individual forecasting methods.
The SVR method performed better than all the other methods with sMAPE of
8,99%. This was followed by the GP method with sMAPE of 9,14%. The third
best-performing method was the ARIMA method with sMAPE of 9,81%. As
expected, the worst-performing method is the random walk method.

Figure 5 shows the sMAPE values of the best method per time series. Each
dot in the diagram represents a single time series (numbered from 1 to 300 on
the horizontal axis) with the sSMAPE value (vertical axis) of the best performing
method on that time series. The colour indicates whether the best-performing
method was a ML or a statistical approach. The performance of both forecasting
method groups shows high variability and deterioration for the last 100 time
series (from 200 to 300), corresponding to the yearly time series. The first 200
time series, which are monthly and quarterly time series, respectively, produced
better results for both groups of methods. The variation appears to be higher
for monthly time series compared to the quarterly data.

Table 3 summarises the performance of individual methods on all time se-
ries. The table shows that statistical methods performed better than the ML
methods on 52% of the time series datasets. However, the statistical methods
also produced the worst results on 82% of the time series. This is due to the
worst performance achieved by the random walk method. The method with a
higher percentage of wins is the SVR (ML method) with 16% of the time series.
This was closely followed by a statistical method (TBATS) with 15% of the time
series. The significance of these results is in the evidence of performance comple-
mentarity between the methods. Each method (even the RWF) out-performs all
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Fig. 3. Boxplots showing the test performance of different methods based on sMAPE.
The red points correspond to the means. From the left, the first five are machine
learning methods, followed by the statistical methods. This shows that the random
walk (RWF') method overshadows the others in terms of bad performance.
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Fig. 4. Methods sorted in ascending order of mean sMAPE, showing that SVR was
the best-performing method on average.
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Fig. 5. Multi-step-ahead forecasts performance of the two groups of methods based on
sMAPE. The first 100 dots represent the monthly time series followed by quarterly and
lastly, the yearly time series represented by the last 100 dots.

other methods on a significant number of time series (represented by the ‘Count
Best’ and ‘% Best’ values in the table). These results motivate for the future use
of metalearning to implement automated algorithm selection between different
methods based on the features of time series.

Figure 6 shows the performance of the two groups of forecasting methods
by length and frequency of the time series. The two groups of methods have
performed well on quarterly time series with sMAPE of 2.1% for ML meth-
ods and 2.2% for statistical methods. On monthly data, the methods also show
similar levels of performance with ML methods performing slightly worse than
the statistical methods. Both methods deteriorated in performance on yearly
data compared to the other frequencies (monthly and quarterly). Of significant
importance is the difference in the performance of these groups on yearly time
series. The ML methods performed far better with SMAPE of 10.7% compared to
15.5% for statistical methods. This is surprising considering that the yearly time
series data have the lowest average length of 42 training data points compared
to the other frequencies. The length of the time series is high for the monthly
time series with an average of 366, followed by the quarterly time series with an
average length of 90.
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Table 3. Group and individual performance of the different forecasting methods il-
lustrating that each method out-performed all other methods on a subset of the time
series. Although RWF was the worst performing method overall, it was still the best-
performing method on 19 of the 300 time series considered in the study.

Method Category [Method |Count Best|%Best|Count Worst|% Worst
MLP 11 4% 10 3%
SVR 47 16% |8 3%
Machine Learning ]CB}I]i)TN i’g é;)% é6 SZ;
NNETAR (35 12% |19 6%
Combined |144 48% |58 19%
ARIMA (36 12% |5 2%
ETS 14 5% 3 1%
Statisitcal THETAF |41 14% |18 6%
TBATS |46 15% |12 4%
RWF 19 6% 204 68%
Combined|156 52% [242 81%
Total 300 100% [300 100%
18
16 \366 15.5
14
12 10.7
10
8 78 7.0
6 90
¢ PER v aa
: [ -

Monthly

VL Methods

Quarterly

Statistical Methods

Yearly

=@==Average Series Length

Fig. 6. Comparison of the performance of the two groups by time series frequency on

sMAPE.
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5 Conclusions

In this paper, we have demonstrated that the ML methods are capable of per-
forming better than their statistical counterparts. This shows that there exists a
subset of time series datasets where machine learning methods are able to pro-
duce results that are far superior to the statistical methods. This further proves
that there is performance complementarity between ML and statistical meth-
ods in time series forecasting. Therefore, there is a need to study this subset of
time series data in order to establish mechanisms that could assist forecasters in
considering these methods for evaluation when selecting appropriate forecasting
methods. Such a mechanism could assist the forecaster in determining whether
to focus on ML methods or not in advance considering that these methods re-
quire a lot of computing time. Future studies could look at the feature design of
this subset of time series where ML methods are superior and design a recom-
mendation system for such time series.
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