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Abstract. Emerging technologies provide novel ways of assessing eco-
logical systems and species. Drones, also known as unmanned aerial ve-
hicles (UAVs), have emerged as a revolutionary tool in conservation, pro-
viding new perspectives and the opportunity for new methods of moni-
toring elusive species. However, the potential of drones, particularly when
combined with modern computational tools, remains largely untapped.
In this study, we use a combination of drone technology, computer vision
and machine learning approaches to recognise and re-identify individual
crocodiles from aerial photos. First, the study focused on the construc-
tion and validation of a model capable of detecting crocodiles inside
photos while also verifying its robustness for varied applications in real-
world scenarios. Second, we investigated the potential of re-identifying
individual crocodiles based on unique morphological traits, specifically
using posture estimation methods and machine learning approaches such
as PCA. The conclusion of these processes enabled us to build the frame-
work for future population monitoring and individual re-identification in
the wild. Our findings underlined the revolutionary potential of drone
applications in animal conservation but also the necessity for multidis-
ciplinary research to address operational and analytical issues, ensuring
the effective protection of ecological diversity and the environment.

Keywords: Drone - CNN - Conservation - Image Recognition - YOLO
- PCA - RoboFlow

1 Introduction

The conservation and management of endangered wildlife species, such as crocodiles,
requires regular and accurate monitoring. Traditional ground-based methods
often fall short, especially when dealing with species that are geographically
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dispersed or exhibit elusive behaviours. Unmanned aerial vehicles (UAVs), com-
monly referred to as drones, offer a promising solution, enabling rapid and ex-
tensive coverage of habitats whilst constraining the reliance on human observers.

While UAV-based wildlife monitoring has been explored globally, there is still
a need for further research and development to optimise its use in varying en-
vironments. Additionally, the integration of advanced technologies such as pho-
tographic imaging with end-to-end neural networks is able to enhance the effec-
tiveness of UAVs in detecting and tracking wildlife, ensuring more precise data
collection for conservation efforts. This study is a pioneering effort in South
Africa, utilising indigenous data. The challenges are multifaceted, such as the
massive amount of data generated by drones, which necessitates sophisticated
processing, and the inherent variability in natural landscapes, which can lead to
misidentifications, such as confusing rocks with crocodiles. By utilising indige-
nous data, the study provides unique insights and perspectives that may not
have been captured by previous studies conducted in other regions.

To overcome the challenges alluded to, we developed a computational frame-
work that used machine learning and computer vision methods to analyse drone-
captured imagery. Our proposed methodology could be used to detect crocodiles
in images and provide basic population monitoring. In addition, we explored
the feasibility of creating a system that could identify key crocodilian morpho-
logical features (e.g., the snout and front legs) that could facilitate individual
re-identification and population health assessment.

The findings from this study can serve as a valuable reference for other countries
facing similar conservation challenges, promoting international collaboration and
knowledge exchange in wildlife conservation efforts. The study is comprised of 3
key elements:

1. The development of a segmentation process based on photographic imagery
collected from UAVs in combination with ground truth data using RoboFlow
annotation techniques. This allowed for accurate identification and mapping
of different wildlife species and their habitats, aiding in targeted conserva-
tion efforts. It also provided a cost-effective and efficient method for moni-
toring and assessing the population dynamics of endangered wildlife species
in South Africa, enabling timely interventions to protect their habitats.

2. Thereafter, With a metadata-rich, annotated dataset, we adopted the YOLO
technique, a deep convolutional neural network (CNN) variation that uses
bounding boxes to find and detect wildlife species (like crocodiles) in drone-
derived images. This made it a flexible tool for monitoring biodiversity in
South Africa.

3. Lastly, we used the pose estimation method [5] to investigate unique morpho-
logical features detected in aerial images, laying the groundwork for future
wildlife monitoring applications.
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2 Related work

Species identification through imagery has been a focal point of numerous stud-
ies. The process typically involves detecting the animal within an image and
subsequently identifying individual animals based on unique morphological fea-
tures. For instance, the study by [9] describes a deep convolutional neural net-
work (CNN) approach that provided a completely automated pipeline for face
detection, tracking, and recognition of wild chimpanzees from long-term video
records. Using the detected faces, they created co-occurrence matrices to track
changes in the social network structure of an ageing chimpanzee population. The
author employed 10 million facial photos from 23 individuals over 50 hours of
footage to get an overall accuracy of 92.5% in recognising a wild chimp and 96.2%
for gender recognition. However, the exploitation of video data was exceedingly
time-consuming, limiting the usability of these technologies at scale.

In the realm of crocodile identification, [3] used convolutional neural networks
(CNNs) to identify individual free-roaming mugger crocodiles from drone-captured
images, a problem that had persisted for years because data collected from indi-
viduals was collected under partially constrained conditions. Consequently, the
authors proposed employing a CNN model to identify individual muggers based
on their dorsal scute patterns. The CNN model was trained using 88,000 im-
ages (collected from 143 individuals residing in 19 distinct locations in western
India). Two similar CNN models were utilised: one with an annotated bound-
ing box approach (such as YOLO-v5l) and the other without annotations using
Inception-v3. The true positive rate (TPR) and the true negative rate (TNR)
were used to validate the performance of the proposed models, which attained
88.8 and 89.6 percent, respectively. At the moment, the implementation of this
type of application is severely constrained because of the overwhelming major-
ity of CNN models requiring substantial computing resources for training and
performance evaluation. This same limitation was encountered in the study by
[11], where the authors noted that CNN accuracy was limited (85%) due to the
unavailability of training data for the CNN.

The overarching goal of these computer vision techniques was to bolster research
and conservation efforts. For instance, a study on crocodile population modelling
in the Olifants River Gorge done by [6] involved manually analysing drone im-
agery to determine population distribution. Given the time-intensive nature of
manual analysis, the aim of this study was to automate this process, thereby
streamlining data processing and analysis for conservationists. This type of re-
search underscores the importance of individual-level identification in ecological
studies by providing nuanced insights into animal behaviour in various contexts
[8]. While biometrics for individual identification (IID) [2] has been extensively
researched, studies like [3] have innovatively applied it to recognise unique fea-
tures, such as the “scutes” on crocodiles.

Building on the foundational work discussed in this study, we collected im-
ages of Nile crocodiles (Crocodylus niloticus) in captivity using an unmanned
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aerial vehicle (UAV). We then trained the YOLO-v8s model using UAV im-
agery that had been segmented and annotated using RoboFlow techniques. The
trained model showed high accuracy in identifying crocodiles, however automatic
re-identification of individuals proved challenging due to the unavailability of
enough annotated images to train the model to identify the key point on indi-
viduals using pose estimation. The subsequent sections delve into the details of
the data description, the methodology followed, the results derived, and finally
concluding remarks and recommendations for future work.

3 Data Description

Data was collected from Nile crocodiles (Crocodylus niloticus) in captivity. The
data collection was facilitated by the DJI Mavic 3 Series drone. The drone had
a 20 Mega-Pixel 1/2" CMOS sensor, 48 MP super-resolution photo and a 8x
lossless zoom FHD video. The drone captured 30 frames per second, with a
maximum flight time of 45 min with no wind, and a hover time of 38 min.
The flight protocol involved taking pictures and videos of the crocodiles at an
elevation range of 10 - 40 m. The data consisted on 7870 photographs in JPEG
format captured on four different days during the months of January, February
and September, which coincided with Summer and Spring in Limpopo province,
South Africa. The photographs were captured throughout the day between 07h00
and 16h00. A summary of the photograph features are presented in Table [I]

Table 1. Dataset Metadata

No. Images: 7870 Resolution: 4056x3040
Data Set Size: 29.7 GB|Color Space: RGB
Average Image Size: 7 MB  |Format: JPEG

26/01,/2022, 03/02/2022,
12/08/2022, 15,08 /2022
Time of day: 07h00 - 16h00 SAST

Dates Recorded:

The data also consisted of 1 hour and 7 minutes of video footage of the same
crocodiles taken on 30/03/2023. A total of 4029 frames were extracted from 77
videos. A summary of the extracted photograph’s features are presented in Table

In addition, data from the study conducted by [3] on crocodiles photographed
in India using a drorfd]

3.1 Exploratory Data Analysis (EDA) on the Unlabeled Images

While EDA on unlabeled data may seem less intuitive than its labeled coun-
terpart, its significance in the machine learning pipeline cannot be understated.
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Table 2. Extracted Image Dataset Metadata

1920 x 1080 (9%)
No. of images: 3593 Resolution: 3840 x 2160 (33%)
5120 x 2700 (58%)
Dataset size:  71.8 GB|Format: JPG

Colour Space: RGB

Date Recorded: 30/03,/2023

Image attributes such as quality, size, aspect ratio, and pixel intensity can pro-
foundly influence model performance [7,[10]. Our EDA process invovled: (i) Data
cleaning to remove corrupted files and ensure image readability; (ii) Image pro-
cessing, including resizing images to 640 x 640 due to computational constraints
on Google Co-Lab; (iii) K-means clustering to categorise images based on shared
attributes; and lastly, (iv) Computation of image statistics to understand bright-
ness and contrast distributions.

From the data collected, similarities were deduced from images falling within the
same cluster. This gave a good indication of the different categories of images
that existed within the dataset and also gave a good indication of the primary
images where crocodiles were present. The average and variance of the pixel
intensity gave an indication of the average brightness and contrast of the images,
respectively [I0]. When aiming to perform tasks such as object identification, the
brightness and contrast features of the images were used to identify where the
crocodiles may have been. Furthermore, it was found that considerable variability
existed within the images, which was considered an advantage when conducting
fine-grained tasks such as individual identification [4].

Lastly, to investigate the image quality, manual inspection was conducted by
taking a sample of random photos and determining if distinct features could be
identified by zooming into the crocodiles. From Figure [I] we can see that the
distinct dorsal scute patterns were not clearly visible. This posed a challenge
in the development of an individual re-identification model that we aimed to
address using the method of pose estimation.

Fig. 1. Aerial image excerpt dataset depicting crocodiles along with a zoomed-in close-
up
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4 Methodology

Utilising the RoboFlow platform[I], we annotated images with instance seg-
mentation, drawing bounding boxes around adult crocodiles larger than 1 m
in length, as illustrated in Figure 2] Our research was then divided into two
primary phases, namely, Phase I: Crocodile Detection, and Phase II: Crocodile
Re-Identification.

Fig. 2. Annotated image of crocodile using smart polygon bounding box on RoboFlow

1. Phase I: Crocodile Detection: This phase aimed to develop a model
proficient in detecting crocodiles within images. It was essential to ensure
that the model was not only robust but also versatile enough to be applied
in various scenarios beyond its initial training context. The pipeline for this
phase is presented in Figure

2. Phase I I: Crocodile Re-Identification: This phase delved into the ap-
plication of pose estimation, where key points on crocodile individuals were
annotated and the spatial differences between these points were calculated
to determine if an individual could be identified through their unique mor-
phological feature measurements. The pipeline for this phase is presented in

Figure [
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Fig. 4. Phase 2: Individual Identification Process Pipeline.

For model development, we employed the YOLO-v8s model, with its baseline
hyperparameters detailed in Table [3] The NVIDIA Tesla T4 GPU was used,
which is based on a Turing architecture and comes with 16 GB GDDR6 VRAM.
This GPU is available on Google Co-Lab.

Model evaluation hinged on the Mean Average Precision (mAP) measure, com-
monly used in object detection. mAP is defined as:

mAp = L § AP, (1)
n
k=1

where, AP} represents the average precision, i.e., the area under the Precision-
Recall (P-R) curve for class k and n. Typically, mAP is computed based on
the Intersection Over Union (JOU), which is defined as the overlap between the
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Table 3. Baseline Model Hyperparameters

Hyperparameter YOLO-v8s

Optimiser: Stochastic Gradient Descent

Learning Rate:  0.01

Mini Batch size: 16

Epoch: 25

Input Image size: 640 x 640

Loss function: Binary Cross-Entropy with Logits
Loss

predicted and ground truth bounding box divided by the union of the predicted
and ground truth bounding box (See Equation .

Owverlap between the Predicted and Ground Truth BB

I =
o Union of the Predicted and Ground Truth BB

(2)

Furthermore, the model performance was evaluated using the True Positive Rate
(TPR) and True negative Rate (TNR) metrics, which are defined by:

TP

TPR_TP+FN (3)
TN

INR= 7N T Fp )

5 Results

5.1 Phase I: Crocodile Detection

The primary aim of Phase I was to develop a robust model capable of detecting
crocodiles within images, ensuring its applicability beyond the training context,
and deploying it for real-world applications. The methodology for this phase
involved:

1. Annotating images containing crocodiles using the RoboFlow platform to
create a training dataset for the YOLO-v8s model.

2. We then trained the model using the annotated dataset with a train/val/test
split of 80/10/10 and extracted the baseline results

3. Thereafter, we tested the model to measure the performance based on the
True Positive Rate, True Negative Rate and False Positive rate to determine
the model’s reliability.

4. Finally, we increased the training dataset size by annotating more images and
re-tested the model to determine if model performance could be improved
based on the metrics measured in the previous step
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Baseline Results The initial training of the YOLO-v8s model was conducted
on 74 images, with validation and testing on 9 images each. The baseline results
showcased a promising mean average precision (mAP) of 0.956 at an IOU of
0.5. However, the model’s performance showed some degradation when the IOU
ranged from 0.5 to 0.95, indicating areas for improvement in localization accu-
racy. The model’s overall accuracy stood at 94%, as depicted in Figures [5| and
(§
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m
E
2 0.4
A}
o
0.2
=@= metrics/mAP50(BB)
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0-0 L T T T T T T
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Fig. 5. mAP on training data with IOU threshold of 0.5 to 0.95

Model Testing The model was subjected to rigorous testing using three dis-
tinct datasets:

1. Test set 1: The test set was derived from using images that were not in-
cluded in the training process, but that were taken in a similar context to
the ones included in the training set, e.g., the pictures were taken at the
same time of day as those in the training dataset. This was done to test
the TPR of the model. In addition, we ensured that each image was derived
from each of the clusters determined in the EDA process, while also taking
into consideration images with the different pixel intensity scores.

2. Test set 2: This test set was focused on using images that were different
from the training set and included features such as buildings or images that
did not have crocodiles at all, to test the TNR of the model.

3. Test set 3: Finally, we tested the model on data completely different from
our dataset. This dataset consisted of crocodiles photographed in India using
a drone to determine if our model could be applied beyond our scope in real
world scenarios to detect free roaming crocodiles [3].
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Fig. 6. YOLO-v8 training and validation loss.

The results, summarised in Table [4 revealed that while the model performed
well on Test sets 1 and 2, its performance on Test set 3 was sub-optimal. This
was evident from the model’s tendency to misidentify rocks as crocodiles, as
shown in Figures [7] and

Table 4. Experimentation Results

Test set 1 Test set 2 Test set 3
TPR|89% 43% 33%
TNR|47% 60% 14%
FPR |53% 40% 86%

Fig. 7. Example of predicted images from Test set 3 showing false positives
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Fig. 8. Example of predicted image from Test set 3 the incorrect detection of a rock
as a crocodile

Model Enhancement To address the identified shortcomings, we expanded
our training dataset by incorporating images from Test sets 2 and 3. The new
images sourced from test sets 2 and 3 were added to the original training dataset,
with the strict stipulation that they only form part of the training set. However,
any images from these two test sets that the model had not previously en-
countered were subsequently added to the test dataset. The augmented training
dataset therafter consisted of 144 images, with the model achieving an accuracy
of 91% post-training, with an increase in TPR performance by 3% for Test set 2
and 9% for Test set 3. However, any significant model performance improvement
could be achieved using the following methods:

1. Increasing the diversity of images within our training dataset: This can be
carried out by calculating the similarity within our entire dataset and choos-
ing to annotate images that have the lowest level of similarity across the
board, thus ensuring more variability within out dataset. Metrics such as
the Structural Similarity Index Measure (SSIM) can be used to determine
this score. Also, including images from Test set 3 in our training dataset
would further increase this diversity. This would also eliminate redundancy
within the images and reduce the bias in the model.

2. Modifications to the training dataset such as cropping, distorting and/or
rotating the images may be necessary to create more variety in the training
dataset.

3. We could also investigate the feature extraction process being carried by
the model using tools such as Grad-CAM, which visualizes the CNN feature
extraction process using a heat map of the RGB scores within the image
to show the prominent features the CNN model detects. The results of this
would provide guidance on what images would best be included in the train-
ing dataset, or inform our technique of image annotation.

4. Furthermore, experimentation with different learning rates, initial seed val-
ues, and alternating between hyper-parameter optimisation techniques to
fine-tune the YOLO-v8 model could be explored in future studies to im-
prove the model performance for the detection of crocodiles.
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5.2 Phase II: Crocodile Re-Identification

Our proposed solution leveraged ‘“Pose-estimation" methods to discern unique
physiological features of crocodiles. Drawing inspiration from the research by
[6], we aimed to use specific physiological measurements, such as the snout-
neck length and snout-hind leg lengths, as unique identifiers for individual re-
identification. We began our analysis with five candidate crocodile individu-
als. For each individual crocodile, multiple images were acquired, capturing the
crocodile in various poses and assigning key points as shown in Figure [9}

UB BR
e
-'\
. LBL
UBR

Snout

Fig. 9. Crocodile key point pose.

The subsequent steps taken in this phase included:

1. Grouping Key points: To ensure consistency in the analysis, key points
were grouped based on the crocodile individual they represented.

2. Interpolation of Key points: We ensured a consistent number of key
points across all crocodiles by interpolating key points in the case where
some crocodiles were cut out of the image and only a partial part of the
individual was visible.

3. Computation of Distance Ratios: We computed a pairwise distance ma-
trix for each crocodile and formed a distance ratio matrix.

4. Dimensionality Reduction and Visualisation: PCA was applied to the
crocodile feature vectors to visualise the differentiation between individual
crocodiles. Thereby testing whether individual differentiation and thus iden-
tification was possible.

Computation of Distance Ratios

Pairwise Distance Computation: Given a set of key points K for a crocodile,
where each key point k; was represented as a coordinate pair (x;, y;), the pairwise
distance between any two key points k; and k; was calculated using the Euclidean
distance formula:
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ki, ky) = /(= 2)2 + (s — )2 (5)

This formula was applied to every pair of key points, resulting in a distance

matrix D where the element D; ; represented the distance between key points
k; and ;.

Distance Ratios: The aim of computing distance ratios was to capture the rela-
tive spatial relationships between the key points. For a given key point k;, the
ratio of its distance to another key point k; relative to the sum of its distances
to all key points was given by:

d(ki, kj)
SN d(ki k)

Where N was the total number of key points. This computation resulted in a
distance ratio matrix R where the element R;; was the distance ratio of k; to
k;. This matrix captured the spatial relationships of key points independent of
their absolute positions or scales.

r(ki, k) = (6)

Principal Component Analysis (PCA)

Mathematical Explanation: Given a data matrix X with zero mean (each feature
has been centered around zero), the covariance matrix is:

T
Cov(X) = z)v( _Xl (7)

Where N is the number of data points. The next step was to compute the eigen-
vectors and eigenvalues of this covariance matrix. The eigenvectors represent the
directions of maximum variance, and the eigenvalues signify the magnitude of
the variance in these directions.

PCA transformed the original data based on these eigenvectors. The first prin-
cipal component is the direction of the highest variance, the second principal
component (orthogonal to the first) captures the highest variance that hasn’t
been captured by the first one, and so on.

Data Reduction: For visualisation, we retained the first three principal compo-
nents. The transformed data was then visualised on a 2D plane, where each axis
represented one of the two principal components. The results are presented in

Figures [10]
PCA 1 vs PCA 2
Crocodile individuals CR_ 3 (triangle) and CR_5 (diamond) in Figure [10| are
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Fig. 10. PCA results showing the variation between individuals

distinctly separated from the other individuals in the PCA 1 direction, suggest-
ing that their keypoint ratios have unique characteristics not shared by the other
crocodiles, whilst CR_ 1 (circle), CR_ 2 (square) and CR_ 4 (inverted triangle)
being more closely grouped together in the direction of highest variances (PCA
1). We do see good separation in the PCA 2 direction for CR_1, CR_2 and
CR_ 4 in the PCA 2 direction.

PCA 2vs PCA 3

CR_5 (circle) and CR_ 2 (square) are quite close in the PCA 2 direction, but
we have already observed that they are easily separable in the PCA 1 direction.
Overall the PCA visualisation indicated that the key points provide some dif-
ferentiation between crocodile individuals. Certain crocodiles appeared closer in
the feature space, indicating potential overlaps or similarities in their key point
structures. The analysis suggested that while key points offer some ability to tell
crocodiles apart, overlaps or similarities between certain individuals might exist,
thus necessitating validation within the workflow.

Recommendations for Improvement The results from Phase IT of our study,
as visualised in Figure underscored the potential of using key points to dif-
ferentiate between individual crocodiles. However, the observed overlaps and
similarities between certain individuals in the PCA visualisation highlight the
need for a more refined approach.

Given the preliminary findings, we recommend the development of a dedicated
machine-learning model that can accurately predict the key points on crocodiles
identified in the images. This would not only enhance the precision of the iden-
tification process but also streamline the workflow outlined in Phase II.

Moreover, to ensure the reliability and robustness of the re-identification pro-
cess, it is imperative to introduce a validation step. This step would involve



Evaluating Drone Imagery for Wildlife Unique Feature Identification 15

cross-checking the predicted key points against a set of manually annotated key
points to assess the accuracy of the predictions. Such a validation mechanism
would provide insights into the model’s performance and areas of improvement,
ensuring that the re-identification process is both accurate and reliable.

In conclusion, while the current approach shows promise, there is ample room for
improvement. By integrating a machine learning model for key point prediction
and incorporating a validation step, we can pave the way for a more robust and
reliable crocodile re-identification system, which could have significant implica-
tions for wildlife conservation and research.

6 Conclusions

The intersection of drone technology and Machine Learning has opened up a
plethora of opportunities in the realm of wildlife research and conservation. This
study stands as a testament to the potential of harnessing these technologies to
discern unique features of wildlife, with a specific focus on crocodiles. Through
the integration of the YOLO-v8s model for crocodile detection and the inno-
vative pose estimation method for individual re-identification, we have laid the
groundwork for a promising solution that can revolutionise wildlife monitoring.

Our findings from Phase I underscored the importance of data diversity in train-
ing datasets. While the model showcased potential in terms of True Positive Rate
(TPR) and True Negative Rate (TNR) scores, it also highlighted areas of im-
provement. The introduction of more variety in the training data, coupled with
strategies like data diversification, data augmentation and model fine-tuning,
could significantly improve the model’s reliability and robustness in real-world
scenarios.

Phase IT delved deeper into the intricate task of re-identifying individual crocodiles.
We propose the approach of using key point estimation for individual identifica-
tion. Traditional approaches to wildlife differentiation often lean heavily on high-
resolution imagery, aiming to capture minute details to distinguish one subject
from another. However, this method, while effective, often falters in real-world
conservation efforts where high resolution imagery is not always available.

Looking ahead, there’s immense potential in integrating the developed system
with established software platforms like QGIS. Such integration would not only
streamline the implementation process but also make the solution more accessible
and user-friendly for conservationists and researchers.
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